
35 Approximation Algorithms

Many problems of practical signiûcance are NP-complete, yet they are too impor-
tant to abandon merely because nobody knows how to ûnd an optimal solution in
polynomial time. Even if a problem is NP-complete, there may be hope. You have
at least three options to get around NP-completeness. First, if the actual inputs are
small, an algorithm with exponential running time might be fast enough. Second,
you might be able to isolate important special cases that you can solve in polyno-
mial time. Third, you can try to devise an approach to ûnd a near-optimal solution
in polynomial time (either in the worst case or the expected case). In practice, near-
optimality is often good enough. We call an algorithm that returns near-optimal
solutions an approximation algorithm. This chapter presents polynomial-time ap-
proximation algorithms for several NP-complete problems.

Performance ratios for approximation algorithms

Suppose that you are working on an optimization problem in which each potential
solution has a positive cost, and you want to ûnd a near-optimal solution. Depend-
ing on the problem, you could deûne an optimal solution as one with maximum
possible cost or as one with minimum possible cost, which is to say that the prob-
lem might be either a maximization or a minimization problem.

We say that an algorithm for a problem has an approximation ratio of if,
for any input of size , the cost of the solution produced by the algorithm is
within a factor of of the cost of an optimal solution:

max

 (35.1)

If an algorithm achieves an approximation ratio of , we call it a -approxi-
mation algorithm. The deûnitions of approximation ratio and -approximation
algorithm apply to both minimization and maximization problems. For a maxi-
mization problem, , and the ratio gives the factor by which

Chapter 35 Approximation Algorithms 1105

the cost of an optimal solution is larger than the cost of the approximate solution.
Similarly, for a minimization problem, , and the ratio gives the
factor by which the cost of the approximate solution is larger than the cost of an
optimal solution. Because we assume that all solutions have positive cost, these
ratios are always well deûned. The approximation ratio of an approximation al-
gorithm is never less than , since implies . Therefore,
a -approximation algorithm 1 produces an optimal solution, and an approximation
algorithm with a large approximation ratio may return a solution that is much worse
than optimal.
For many problems, we know of polynomial-time approximation algorithms

with small constant approximation ratios, although for other problems, the best
known polynomial-time approximation algorithms have approximation ratios that
grow as functions of the input size . An example of such a problem is the set-cover
problem presented in Section 35.3.
Some polynomial-time approximation algorithms can achieve increasingly bet-

ter approximation ratios by using more and more computation time. For such
problems, you can trade computation time for the quality of the approximation.
An example is the subset-sum problem studied in Section 35.5. This situation is
important enough to deserve a name of its own.

An approximation scheme for an optimization problem is an approximation al-
gorithm that takes as input not only an instance of the problem, but also a value

 such that for any ûxed , the scheme is a -approximation algorithm.
We say that an approximation scheme is a polynomial-time approximation scheme
if for any ûxed , the scheme runs in time polynomial in the size of its input
instance.
The running time of a polynomial-time approximation scheme can increase very

rapidly as decreases. For example, the running time of a polynomial-time ap-
proximation scheme might be . Ideally, if decreases by a constant factor,
the running time to achieve the desired approximation should not increase by more
than a constant factor (though not necessarily the same constant factor by which
decreased).

We say that an approximation scheme is a fully polynomial-time approximation
scheme if it is an approximation scheme and its running time is polynomial in
both and the size of the input instance. For example, the scheme might have
a running time of . With such a scheme, any constant-factor decrease
in comes with a corresponding constant-factor increase in the running time.

 When the approximation ratio is independent of , we use the terms <approximation ratio of =
and < -approximation algorithm,= indicating no dependence on .

1106 Chapter 35 Approximation Algorithms

Chapter outline

The ûrst four sections of this chapter present some examples of polynomial-time
approximation algorithms for NP-complete problems, and the ûfth section gives
a fully polynomial-time approximation scheme. We begin in Section 35.1 with a
study of the vertex-cover problem, an NP-complete minimization problem that has
an approximation algorithm with an approximation ratio of . Section 35.2 looks at
a version of the traveling-salesperson problem in which the cost function satisûes
the triangle inequality and presents an approximation algorithm with an approxi-
mation ratio of . The section also shows that without the triangle inequality, for
any constant , a -approximation algorithm cannot exist unless P NP.
Section 35.3 applies a greedy method as an effective approximation algorithm for
the set-covering problem, obtaining a covering whose cost is at worst a logarithmic
factor larger than the optimal cost. Section 35.4 uses randomization and linear pro-
gramming to develop two more approximation algorithms. The section ûrst deûnes
the optimization version of 3-CNF satisûability and gives a simple randomized
algorithm that produces a solution with an expected approximation ratio of .
Then Section 35.4 examines a weighted variant of the vertex-cover problem and
exhibits how to use linear programming to develop a -approximation algorithm.
Finally, Section 35.5 presents a fully polynomial-time approximation scheme for
the subset-sum problem.

35.1 The vertex-cover problem

Section 34.5.2 deûned the vertex-cover problem and proved it NP-complete. Recall
that a vertex cover of an undirected graph is a subset such
that if is an edge of , then either or (or both). The size of a
vertex cover is the number of vertices in it.

The vertex-cover problem is to ûnd a vertex cover of minimum size in a given
undirected graph. We call such a vertex cover an optimal vertex cover. This prob-
lem is the optimization version of an NP-complete decision problem.
Even though nobody knows how to ûnd an optimal vertex cover in a graph in

polynomial time, there is an efûcient algorithm to ûnd a vertex cover that is near-
optimal. The approximation algorithm APPROX-VERTEX-COVER on the facing
page takes as input an undirected graph and returns a vertex cover whose size is
guaranteed to be no more than twice the size of an optimal vertex cover.
Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example

graph. The variable contains the vertex cover being constructed. Line 1 initial-
izes to the empty set. Line 2 sets to be a copy of the edge set E of the
graph. The while loop of lines 336 repeatedly picks an edge from , adds

35.1 The vertex-cover problem 1107

APPROX-VERTEX-COVER
1
2 E
3 while
4 let be an arbitrary edge of
5
6 remove from edge and every edge incident on either or
7 return

its endpoints and into , and deletes all edges in that or covers. Finally,
line 7 returns the vertex cover . The running time of this algorithm is ,
using adjacency lists to represent .

Theorem 35.1
APPROX-VERTEX-COVER is a polynomial-time -approximation algorithm.

Proof We have already shown that APPROX-VERTEX-COVER runs in polyno-
mial time.

The set of vertices that is returned by APPROX-VERTEX-COVER is a vertex
cover, since the algorithm loops until every edge in E has been covered by some
vertex in .

To see that APPROX-VERTEX-COVER returns a vertex cover that is at most twice
the size of an optimal cover, let denote the set of edges that line 4 of APPROX-
VERTEX-COVER picked. In order to cover the edges in , any vertex cover4in
particular, an optimal cover 4must include at least one endpoint of each edge
in . No two edges in share an endpoint, since once an edge is picked in line 4,
all other edges that are incident on its endpoints are deleted from in line 6. Thus,
no two edges in are covered by the same vertex from , meaning that for every
vertex in , there is at most one edge in , giving the lower bound

 (35.2)
on the size of an optimal vertex cover. Each execution of line 4 picks an edge for
which neither of its endpoints is already in , yielding an upper bound (an exact
upper bound, in fact) on the size of the vertex cover returned:

 (35.3)
Combining equations (35.2) and (35.3) yields

thereby proving the theorem.

1108 Chapter 35 Approximation Algorithms

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph , which has
vertices and edges. (b) The highlighted edge is the ûrst edge chosen by APPROX-VERTEX-
COVER. Vertices and , in blue, are added to the set containing the vertex cover being created.
Dashed edges , , and are removed since they are now covered by some vertex
in . (c) Edge is chosen, and vertices and are added to . (d) Edge is cho-
sen, and vertices and are added to . (e) The set , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices . (f) The optimal vertex cover for
this problem contains only three vertices: , , and .

Let us reüect on this proof. At ûrst, you might wonder how you can possibly
prove that the size of the vertex cover returned by APPROX-VERTEX-COVER is at
most twice the size of an optimal vertex cover, when you don’t even know the size
of an optimal vertex cover. Instead of requiring that you know the exact size of an
optimal vertex cover, you ûnd a lower bound on the size. As Exercise 35.1-2 asks
you to show, the set of edges that line 4 of APPROX-VERTEX-COVER selects is
actually a maximal matching in the graph . (A maximal matching is a matching
to which no edges can be added and still have a matching.) The size of a maximal
matching is, as we argued in the proof of Theorem 35.1, a lower bound on the size
of an optimal vertex cover. The algorithm returns a vertex cover whose size is at
most twice the size of the maximal matching . The approximation ratio comes
from relating the size of the solution returned to the lower bound. We will use this
methodology in later sections as well.

35.2 The traveling-salesperson problem 1109

Exercises

35.1-1
Give an example of a graph for which APPROX-VERTEX-COVER always yields a
suboptimal solution.

35.1-2
Prove that the set of edges picked in line 4 of APPROX-VERTEX-COVER forms a
maximal matching in the graph .

 35.1-3
Consider the following heuristic to solve the vertex-cover problem. Repeatedly
select a vertex of highest degree, and remove all of its incident edges. Give an
example to show that this heuristic does not provide an approximation ratio of .
(Hint: Try a bipartite graph with vertices of uniform degree on the left and vertices
of varying degree on the right.)

35.1-4
Give an efûcient greedy algorithm that ûnds an optimal vertex cover for a tree in
linear time.

35.1-5
The proof of Theorem 34.12 on page 1084 illustrates that the vertex-cover problem
and the NP-complete clique problem are complementary in the sense that an opti-
mal vertex cover is the complement of a maximum-size clique in the complement
graph. Does this relationship imply that there is a polynomial-time approximation
algorithm with a constant approximation ratio for the clique problem? Justify your
answer.

35.2 The traveling-salesperson problem

The input to the traveling-salesperson problem, introduced in Section 34.5.4, is a
complete undirected graph that has a nonnegative integer cost
associated with each edge . The goal is to ûnd a hamiltonian cycle (a
tour) of with minimum cost. As an extension of our notation, let denote
the total cost of the edges in the subset :

1110 Chapter 35 Approximation Algorithms

In many practical situations, the least costly way to go from a place to a place
is to go directly, with no intermediate steps. Put another way, cutting out an inter-
mediate stop never increases the cost. Such a cost function satisûes the triangle
inequality: for all vertices ,

The triangle inequality seems as though it should naturally hold, and it is au-
tomatically satisûed in several applications. For example, if the vertices of the
graph are points in the plane and the cost of traveling between two vertices is the
ordinary euclidean distance between them, then the triangle inequality is satisûed.
Furthermore, many cost functions other than euclidean distance satisfy the triangle
inequality.
As Exercise 35.2-2 shows, the traveling-salesperson problem is NP-complete

even if you require the cost function to satisfy the triangle inequality. Thus, you
should not expect to ûnd a polynomial-time algorithm for solving this problem ex-
actly. Your time would be better spent looking for good approximation algorithms.
In Section 35.2.1, we examine a -approximation algorithm for the traveling-

salesperson problem with the triangle inequality. In Section 35.2.2, we show that
without the triangle inequality, a polynomial-time approximation algorithm with a
constant approximation ratio does not exist unless P NP.

35.2.1 The traveling-salesperson problem with the triangle inequality

Applying the methodology of the previous section, start by computing a structure
4a minimum spanning tree4whose weight gives a lower bound on the length of
an optimal traveling-salesperson tour. Then use the minimum spanning tree to cre-
ate a tour whose cost is no more than twice that of the minimum spanning tree’s
weight, as long as the cost function satisûes the triangle inequality. The proce-
dure APPROX-TSP-TOUR on the next page implements this approach, calling the
minimum-spanning-tree algorithm MST-PRIM on page 596 as a subroutine. The
parameter is a complete undirected graph, and the cost function satisûes the
triangle inequality.
Recall from Section 12.1 that a preorder tree walk recursively visits every vertex

in the tree, listing a vertex when it is ûrst encountered, before visiting any of its
children.
Figure 35.2 illustrates the operation of APPROX-TSP-TOUR. Part (a) of the ûg-

ure shows a complete undirected graph, and part (b) shows the minimum spanning
tree grown from root vertex by MST-PRIM. Part (c) shows how a preorder
walk of visits the vertices, and part (d) displays the corresponding tour, which is
the tour returned by APPROX-TSP-TOUR. Part (e) displays an optimal tour, which
is about % shorter.

35.2 The traveling-salesperson problem 1111

(a)

a d

b f

e

g

c

h

(b)

a d

b f

e

g

c

h

(c)

a d

e

c

h

(d)

a d

b f

e

g

c

h

(e)

b f g

e

h

c

a

b f g

d

Figure 35.2 The operation of APPROX-TSP-TOUR. (a) A complete undirected graph. Vertices lie
on intersections of integer grid lines. For example, is one unit to the right and two units up from .
The cost function between two points is the ordinary euclidean distance. (b) A minimum spanning
tree of the complete graph, as computed by MST-PRIM. Vertex is the root vertex. Only edges
in the minimum spanning tree are shown. The vertices happen to be labeled in such a way that they
are added to the main tree by MST-PRIM in alphabetical order. (c) A walk of , starting at . A
full walk of the tree visits the vertices in the order . A preorder
walk of lists a vertex just when it is ûrst encountered, as indicated by the dot next to each vertex,
yielding the ordering . (d) A tour obtained by visiting the vertices in the order
given by the preorder walk, which is the tour returned by APPROX-TSP-TOUR. Its total cost
is approximately . (e) An optimal tour for the original complete graph. Its total cost is
approximately .

APPROX-TSP-TOUR
1 select a vertex V to be a <root= vertex
2 compute a minimum spanning tree for from root

using MST-PRIM
3 let be a list of vertices, ordered according to when they are ûrst visited

in a preorder tree walk of
4 return the hamiltonian cycle

1112 Chapter 35 Approximation Algorithms

By Exercise 21.2-2, even with a simple implementation of MST-PRIM, the run-
ning time of APPROX-TSP-TOUR is . We now show that if the cost function
for an instance of the traveling-salesperson problem satisûes the triangle inequal-
ity, then APPROX-TSP-TOUR returns a tour whose cost is at most twice the cost
of an optimal tour.

Theorem 35.2
When the triangle inequality holds, APPROX-TSP-TOUR is a polynomial-time
-approximation algorithm for the traveling-salesperson problem.

Proof We have already seen that APPROX-TSP-TOUR runs in polynomial time.
Let denote an optimal tour for the given set of vertices. Deleting any edge

from a tour yields a spanning tree, and each edge cost is nonnegative. Therefore,
the weight of the minimum spanning tree computed in line 2 of APPROX-TSP-
TOUR provides a lower bound on the cost of an optimal tour:

 (35.4)

A full walk of lists the vertices when they are ûrst visited and also whenever
they are returned to after a visit to a subtree. Let’s call this full walk . The full
walk of our example gives the order

Since the full walk traverses every edge of exactly twice, by extending the deû-
nition of the cost in the natural manner to handle multisets of edges, we have

 (35.5)

Inequality (35.4) and equation (35.5) imply that

 (35.6)

and so the cost of is within a factor of of the cost of an optimal tour.
Of course, the full walk is not a tour, since it visits some vertices more than

once. By the triangle inequality, however, deleting a visit to any vertex from
does not increase the cost. (When a vertex is deleted from between visits to

 and , the resulting ordering speciûes going directly from to .) Repeatedly
apply this operation on each visit to a vertex after the ûrst time it’s visited in , so
that is left with only the ûrst visit to each vertex. In our example, this process
leaves the ordering

This ordering is the same as that obtained by a preorder walk of the tree . Let
be the cycle corresponding to this preorder walk. It is a hamiltonian cycle, since ev-

35.2 The traveling-salesperson problem 1113

ery vertex is visited exactly once, and in fact it is the cycle computed by APPROX-
TSP-TOUR. Since is obtained by deleting vertices from the full walk , we
have

 (35.7)
Combining inequalities (35.6) and (35.7) gives , which completes
the proof.

Despite the small approximation ratio provided by Theorem 35.2, APPROX-
TSP-TOUR is usually not the best practical choice for this problem. There are other
approximation algorithms that typically perform much better in practice. (See the
references at the end of this chapter.)

35.2.2 The general traveling-salesperson problem

When the cost function does not satisfy the triangle inequality, there is no way to
ûnd good approximate tours in polynomial time unless P NP.

Theorem 35.3
If P NP, then for any constant , there is no polynomial-time approxi-
mation algorithm with approximation ratio for the general traveling-salesperson
problem.

Proof The proof is by contradiction. Suppose to the contrary that for some num-
ber , there is a polynomial-time approximation algorithm with approxima-
tion ratio . Without loss of generality, assume that is an integer, by rounding it
up if necessary. We will show how to use to solve instances of the hamiltonian-
cycle problem (deûned in Section 34.2) in polynomial time. Since Theorem 34.13
on page 1085 says that the hamiltonian-cycle problem is NP-complete, Theo-
rem 34.4 on page 1063 implies that if it has a polynomial-time algorithm, then
P NP.

Let be an instance of the hamiltonian-cycle problem. We will show
how to determine efûciently whether contains a hamiltonian cycle by making
use of the hypothesized approximation algorithm . Convert into an instance of
the traveling-salesperson problem as follows. Let be the complete
graph on , that is,

 and

Assign an integer cost to each edge in as follows:

 if
 otherwise

1114 Chapter 35 Approximation Algorithms

Given a representation of , it takes time polynomial in and to create
representations of and .
Now consider the traveling-salesperson problem . If the original graph

has a hamiltonian cycle , then the cost function assigns to each edge of a
cost of , and so contains a tour of cost . On the other hand, if does
not contain a hamiltonian cycle, then any tour of must use some edge not in .
But any tour that uses an edge not in has a cost of at least

Because edges not in are so costly, there is a gap of at least between the cost
of a tour that is a hamiltonian cycle in (cost) and the cost of any other tour
(cost at least). Therefore, the cost of a tour that is not a hamiltonian
cycle in is at least a factor of greater than the cost of a tour that is a
hamiltonian cycle in .

What happens upon applying the approximation algorithm to the traveling-
salesperson problem ? Because is guaranteed to return a tour of cost no
more than times the cost of an optimal tour, if contains a hamiltonian cycle,
then must return it. If has no hamiltonian cycle, then returns a tour of
cost more than . Therefore, using solves the hamiltonian-cycle problem in
polynomial time.

The proof of Theorem 35.3 serves as an example of a general technique to prove
that no good approximation algorithm exists for a particular problem. Given an
NP-hard decision problem , produce in polynomial time a minimization prob-
lem such that <yes= instances of correspond to instances of with value at
most (for some), but that <no= instances of correspond to instances of
with value greater than . This technique shows that, unless P NP, there is no
polynomial-time -approximation algorithm for problem .

Exercises

35.2-1
Let be a complete undirected graph containing at least vertices, and
let be a cost function that satisûes the triangle inequality. Prove that
for all .

35.2-2
Show how in polynomial time to transform one instance of the traveling-sales-
person problem into another instance whose cost function satisûes the triangle in-
equality. The two instances must have the same set of optimal tours. Explain why

35.3 The set-covering problem 1115

such a polynomial-time transformation does not contradict Theorem 35.3, assum-
ing that P NP.

35.2-3
Consider the following closest-point heuristic for building an approximate trav-
eling-salesperson tour whose cost function satisûes the triangle inequality. Begin
with a trivial cycle consisting of a single arbitrarily chosen vertex. At each step,
identify the vertex that is not on the cycle but whose distance to any vertex on the
cycle is minimum. Suppose that the vertex on the cycle that is nearest is vertex .
Extend the cycle to include by inserting just after . Repeat until all vertices
are on the cycle. Prove that this heuristic returns a tour whose total cost is not more
than twice the cost of an optimal tour.

35.2-4
A solution to the bottleneck traveling-salesperson problem is the hamiltonian cy-
cle that minimizes the cost of the most costly edge in the cycle. Assuming that the
cost function satisûes the triangle inequality, show that there exists a polynomial-
time approximation algorithm with approximation ratio for this problem. (Hint:
Show recursively how to visit all the nodes in a bottleneck spanning tree, as dis-
cussed in Problem 21-4 on page 601, exactly once by taking a full walk of the tree
and skipping nodes, but without skipping more than two consecutive intermedi-
ate nodes. Show that the costliest edge in a bottleneck spanning tree has a cost
bounded from above by the cost of the costliest edge in a bottleneck hamiltonian
cycle.)

35.2-5
Suppose that the vertices for an instance of the traveling-salesperson problem are
points in the plane and that the cost is the euclidean distance between points

 and . Show that an optimal tour never crosses itself.

35.2-6
Adapt the proof of Theorem 35.3 to show that for any constant , there is no
polynomial-time approximation algorithm with approximation ratio for the
general traveling-salesperson problem.

35.3 The set-covering problem

The set-covering problem is an optimization problem that models many problems
that require resources to be allocated. Its corresponding decision problem gener-
alizes the NP-complete vertex-cover problem and is therefore also NP-hard. The

1116 Chapter 35 Approximation Algorithms

approximation algorithm developed to handle the vertex-cover problem doesn’t ap-
ply here, however. Instead, this section investigates a simple greedy heuristic with
a logarithmic approximation ratio. That is, as the size of the instance gets larger,
the size of the approximate solution may grow, relative to the size of an optimal
solution. Because the logarithm function grows rather slowly, however, this ap-
proximation algorithm may nonetheless give useful results.

An instance of the set-covering problem consists of a ûnite set and
a family of subsets of , such that every element of belongs to at least one
subset in :

We say that a subfamily covers a set of elements if

The problem is to ûnd a minimum-size subfamily whose members cover
all of :

Figure 35.3 illustrates the set-covering problem. The size of is the number of
sets it contains, rather than the number of individual elements in these sets, since
every subfamily that covers must contain all individual elements. In
Figure 35.3, the minimum set cover has size .
The set-covering problem abstracts many commonly arising combinatorial prob-

lems. As a simple example, suppose that represents a set of skills that are needed
to solve a problem and that you have a given set of people available to work on the
problem. You wish to form a committee, containing as few people as possible, such
that for every requisite skill in , at least one member of the committee has that
skill. The decision version of the set-covering problem asks whether a covering ex-
ists with size at most , where is an additional parameter speciûed in the problem
instance. The decision version of the problem is NP-complete, as Exercise 35.3-2
asks you to show.

A greedy approximation algorithm

The greedy method in the procedure GREEDY-SET-COVER on the facing page
works by picking, at each stage, the set that covers the greatest number of re-
maining elements that are uncovered. In the example of Figure 35.3, GREEDY-
SET-COVER adds to , in order, the sets , , and , followed by either
or .

35.3 The set-covering problem 1117

S 3

S 6

S 4 S 5

S 2

S 1

Figure 35.3 An instance of the set-covering problem, where consists of the tan points
and . Each set is outlined in blue. A minimum-size set cover
is , with size . The greedy algorithm produces a cover of size by selecting either
the sets , , , and or the sets , , , and , in order.

GREEDY-SET-COVER
1
2
3
4 while
5 select that maximizes
6
7
8
9 return

The greedy algorithm works as follows. At the start of each iteration, is a
subset of containing the remaining uncovered elements, with the initial sub-
set containing all the elements in . The set contains the subfamily being
constructed. Line 5 is the greedy decision-making step, choosing a subset that
covers as many uncovered elements as possible (breaking ties arbitrarily). After

 is selected, line 6 updates the set of remaining uncovered elements, denoting
it by , and line 7 places into . When the algorithm terminates, is a
subfamily of that covers .

Analysis

We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover.

1118 Chapter 35 Approximation Algorithms

Theorem 35.4
The procedure GREEDY-SET-COVER run on a set and family of subsets is a
polynomial-time lg -approximation algorithm.

Proof Let’s ûrst show that the algorithm runs in time that is polynomial in
and . The number of iterations of the loop in lines 437 is bounded above by
min . The loop body can be implemented to run in

 time. Thus the algorithm runs in time, which
is polynomial in the input size. (Exercise 35.3-3 asks for a linear-time algorithm.)

To prove the approximation bound, let be an optimal set cover for the original
instance , and let . Since is also a set cover of each subset
of constructed by the algorithm, we know that any subset constructed by the
algorithm can be covered by sets. Therefore, if is an instance of the
set-covering problem, its optimal set cover has size at most .

If an optimal set cover for an instance has size at most , at least one
of the sets in covers at least new elements. Thus, line 5 of GREEDY-
SET-COVER, which chooses a set with the maximum number of uncovered ele-
ments, must choose a set in which the number of newly covered elements is at
least . These elements are removed when constructing , giving

 (35.8)

Iterating inequality (35.8) gives

and in general
 (35.9)

The algorithm stops when , which means that . Thus an upper
bound on the number of iterations of the algorithm is the smallest value of for
which .

Since for all real (see inequality (3.14) on page 66), by letting
 , we have , so that .

Denoting the number of iterations by for some nonnegative integer , we want
 such that

 (35.10)
Multiplying both sides by and then taking the natural logarithm of both sides
gives ln , so we can choose for any integer that is at least ln . We

35.4 Randomization and linear programming 1119

choose ln . Since is an upper bound on the number of iterations,
which equals the size of , and , we have

 ln , and the theorem follows.

Exercises

35.3-1
Consider each of the following words as a set of letters: arid dash drain
heard lost nose shun slate snare thread . Show which set cover
GREEDY-SET-COVER produces when you break ties in favor of the word that ap-
pears ûrst in the dictionary.

35.3-2
Show that the decision version of the set-covering problem is NP-complete by
reducing the vertex-cover problem to it.

35.3-3
Show how to implement GREEDY-SET-COVER to run in

time.

35.3-4
The proof of Theorem 35.4 says that when GREEDY-SET-COVER, run on the in-
stance , returns the subfamily , then ln . Show that the
following weaker bound is trivially true:

 max

35.3-5
GREEDY-SET-COVER can return a number of different solutions, depending on
how it breaks ties in line 5. Give a procedure BAD-SET-COVER-I NSTANCE that
returns an -element instance of the set-covering problem for which, depending
on how line 5 breaks ties, GREEDY-SET-COVER can return a number of different
solutions that is exponential in .

35.4 Randomization and linear programming

This section studies two useful techniques for designing approximation algorithms:
randomization and linear programming. It starts with a simple randomized algo-
rithm for an optimization version of 3-CNF satisûability, and then it shows how
to design an approximation algorithm for a weighted version of the vertex-cover
problem based on linear programming. This section only scratches the surface of

1120 Chapter 35 Approximation Algorithms

these two powerful techniques. The chapter notes give references for further study
of these areas.

A randomized approximation algorithm for MAX-3-CNF satisfiability

Just as some randomized algorithms compute exact solutions, some randomized
algorithms compute approximate solutions. We say that a randomized algorithm
for a problem has an approximation ratio of if, for any input of size , the
expected cost of the solution produced by the randomized algorithm is within a
factor of of the cost of an optimal solution:

max

 (35.11)

We call a randomized algorithm that achieves an approximation ratio of a
randomized -approximation algorithm. In other words, a randomized ap-
proximation algorithm is like a deterministic approximation algorithm, except that
the approximation ratio is for an expected cost.
A particular instance of 3-CNF satisûability, as deûned in Section 34.4, may or

may not be satisûable. In order to be satisûable, there must exist an assignment of
the variables so that every clause evaluates to . If an instance is not satisûable, you
might instead want to know how <close= to satisûable it is, that is, ûnd an assign-
ment of the variables that satisûes as many clauses as possible. We call the resulting
maximization problem MAX-3-CNF satisûability. The input to MAX-3-CNF sat-
isûability is the same as for 3-CNF satisûability, and the goal is to return an assign-
ment of the variables that maximizes the number of clauses evaluating to . You
might be surprised that randomly setting each variable to with probability
and to with probability yields a randomized -approximation algorithm,
but we’re about to see why. Recall that the deûnition of 3-CNF satisûability from
Section 34.4 requires each clause to consist of exactly three distinct literals. We
now further assume that no clause contains both a variable and its negation. Exer-
cise 35.4-1 asks you to remove this last assumption.

Theorem 35.5
Given an instance of MAX-3-CNF satisûability with variables
and clauses, the randomized algorithm that independently sets each variable to
with probability and to with probability is a randomized -approxi-
mation algorithm.

Proof Suppose that each variable is independently set to with probability
and to with probability . Deûne, for , the indicator random
variable

35.4 Randomization and linear programming 1121

 I clause is satisûed

so that as long as at least one of the literals in the th clause is set to .
Since no literal appears more than once in the same clause, and since we assume
that no variable and its negation appear in the same clause, the settings of the three
literals in each clause are independent. A clause is not satisûed only if all three
of its literals are set to , and so Pr clause is not satisûed .
Thus, we have Pr clause is satisûed , and Lemma 5.1 on
page 130 gives E . Let be the number of satisûed clauses overall, so
that . Then, we have

E E

E (by linearity of expectation)

Since is an upper bound on the number of satisûed clauses, the approximation
ratio is at most .

Approximating weighted vertex cover using linear programming

The minimum-weight vertex-cover problem takes as input an undirected graph
 in which each vertex has an associated positive weight .

The weight of a vertex cover is the sum of the weights of its
vertices:

 . The goal is to ûnd a vertex cover of minimum

weight.
The approximation algorithm for unweighted vertex cover from Section 35.1

won’t work here, because the solution it returns could be far from optimal for the
weighted problem. Instead, we’ll ûrst compute a lower bound on the weight of the
minimum-weight vertex cover, by using a linear program. Then we’ll <round= this
solution and use it to obtain a vertex cover.

Start by associating a variable with each vertex , and require that
 equals either or for each . The vertex cover includes if and only if
 . Then the constraint that for any edge , at least one of and must

belong to the vertex cover can be expressed as . This view gives
rise to the following 0-1 integer program for ûnding a minimum-weight vertex
cover:

1122 Chapter 35 Approximation Algorithms

minimize

 (35.12)

subject to
 for each (35.13)

 for each (35.14)

In the special case in which all the weights equal , this formulation is
the optimization version of the NP-hard vertex-cover problem. Let’s remove the
constraint that and replace it by , resulting in the
following linear program:

minimize

 (35.15)

subject to
 for each (35.16)

 for each (35.17)
 for each (35.18)

We refer to this linear program as the linear-programming relaxation. Any fea-
sible solution to the 0-1 integer program in lines (35.12)3(35.14) is also a feasible
solution to its linear-programming relaxation in lines (35.15)3(35.18). Therefore,
the value of an optimal solution to the linear-programming relaxation provides a
lower bound on the value of an optimal solution to the 0-1 integer program, and
hence a lower bound on the optimal weight in the minimum-weight vertex-cover
problem.

The procedure APPROX-MIN-WEIGHT-VC on the facing page starts with a so-
lution to the linear-programming relaxation and uses it to construct an approximate
solution to the minimum-weight vertex-cover problem. The procedure works as
follows. Line 1 initializes the vertex cover to be empty. Line 2 formulates the
linear-programming relaxation in lines (35.15)3(35.18) and then solves this linear
program. An optimal solution gives each vertex an associated value , where
 . The procedure uses this value to guide the choice of which vertices

to add to the vertex cover in lines 335: the vertex cover includes vertex if
and only if . In effect, the procedure <rounds= each fractional variable
in the solution to the linear-programming relaxation to either or in order to ob-
tain a solution to the 0-1 integer program in lines (35.12)3(35.14). Finally, line 6
returns the vertex cover .

Theorem 35.6
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time -approximation al-
gorithm for the minimum-weight vertex-cover problem.

35.4 Randomization and linear programming 1123

APPROX-MIN-WEIGHT-VC
1
2 compute , an optimal solution to the linear-programming relaxation

in lines (35.15)3(35.18)
3 for each vertex
4 if
5
6 return

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 335 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

It remains to show that APPROX-MIN-WEIGHT-VC is a -approximation algo-
rithm. Let be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let be the value of an optimal solution to the linear-programming relax-
ation in lines (35.15)3(35.18). Since an optimal vertex cover is a feasible solution
to the linear-programming relaxation, must be a lower bound on , that is,

 (35.19)
Next, we claim that rounding the fractional values of the variables in lines 335
produces a set that is a vertex cover and satisûes . To see that is
a vertex cover, consider any edge . By constraint (35.16), we know that

 , which implies that at least one of and is at least .
Therefore, at least one of and is included in the vertex cover, and so every edge
is covered.

Now we consider the weight of the cover. We have

 (35.20)

1124 Chapter 35 Approximation Algorithms

Combining inequalities (35.19) and (35.20) gives

and hence APPROX-MIN-WEIGHT-VC is a -approximation algorithm.

Exercises

35.4-1
Show that even if a clause is allowed to contain both a variable and its negation,
randomly setting each variable to with probability and to with probabil-
ity still yields a randomized -approximation algorithm.

35.4-2
The MAX-CNF satisûability problem is like the MAX-3-CNF satisûability prob-
lem, except that it does not restrict each clause to have exactly three literals. Give a
randomized -approximation algorithm for the MAX-CNF satisûability problem.

35.4-3
In the MAX-CUT problem, the input is an unweighted undirected graph

. We deûne a cut as in Chapter 21 and the weight of a cut
as the number of edges crossing the cut. The goal is to ûnd a cut of maximum
weight. Suppose that each vertex is randomly and independently placed into
with probability and into with probability . Show that this algorithm
is a randomized -approximation algorithm.

35.4-4
Show that the constraints in line (35.17) are redundant in the sense that remov-
ing them from the linear-programming relaxation in lines (35.15)3(35.18) yields a
linear program for which any optimal solution must satisfy for each

 .

35.5 The subset-sum problem

Recall from Section 34.5.5 that an instance of the subset-sum problem is given
by a pair , where is a set of positive integers and is a
positive integer. This decision problem asks whether there exists a subset of that
adds up exactly to the target value . As we saw in Section 34.5.5, this problem is
NP-complete.

The optimization problem associated with this decision problem arises in prac-
tical applications. The optimization problem seeks a subset of

35.5 The subset-sum problem 1125

whose sum is as large as possible but not larger than . For example, consider a
truck that can carry no more than pounds, which is to be loaded with up to dif-
ferent boxes, the th of which weighs pounds. How heavy a load can the truck
take without exceeding the -pound weight limit?
We start this section with an exponential-time algorithm to compute the optimal

value for this optimization problem. Then we show how to modify the algorithm
so that it becomes a fully polynomial-time approximation scheme. (Recall that a
fully polynomial-time approximation scheme has a running time that is polynomial
in as well as in the size of the input.)

An exponential-time exact algorithm

Suppose that you compute, for each subset of , the sum of the elements in ,
and then you select, among the subsets whose sum does not exceed , the one whose
sum is closest to . This algorithm returns the optimal solution, but it might take
exponential time. To implement this algorithm, you can use an iterative procedure
that, in iteration , computes the sums of all subsets of , using as a
starting point the sums of all subsets of . In doing so, you would
realize that once a particular subset has a sum exceeding , there is no reason
to maintain it, since no superset of can be an optimal solution. Let’s see how to
implement this strategy.

The procedure EXACT-SUBSET-SUM takes an input set ,
the size , and a target value . This procedure iteratively computes , the
list of sums of all subsets of that do not exceed , and then it returns
the maximum value in .

If is a list of positive integers and is another positive integer, then let
denote the list of integers derived from by increasing each element of by .
For example, if , then . This notation
extends to sets, so that

EXACT-SUBSET-SUM
1
2 for to
3 MERGE-LISTS
4 remove from every element that is greater than
5 return the largest element in

EXACT-SUBSET-SUM invokes an auxiliary procedure MERGE-LISTS ,
which returns the sorted list that is the merge of its two sorted input lists and ,

1126 Chapter 35 Approximation Algorithms

with duplicate values removed. Like the MERGE procedure we used in merge sort
on page 36, MERGE-LISTS runs in time. We omit the pseudocode
for MERGE-LISTS.

To see how EXACT-SUBSET-SUM works, let denote the set of values ob-
tained by selecting each (possibly empty) subset of and summing
its members. For example, if , then

Given the identity

 (35.21)

you can prove by induction on (see Exercise 35.5-1) that the list is a sorted list
containing every element of whose value is not more than . Since the length
of can be as much as , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which
is polynomial in or all the numbers in are bounded by a polynomial in .

A fully polynomial-time approximation scheme

The key to devising a fully polynomial-time approximation scheme for the subset-
sum problem is to <trim= each list after it is created. Here’s the idea behind
trimming: if two values in are close to each other, then since the goal is just an
approximate solution, there is no need to maintain both of them explicitly. More
precisely, use a trimming parameter such that . When trimming a
list by , remove as many elements from as possible, in such a way that if
is the result of trimming , then for every element that was removed from ,
some element still in approximates . For to approximate , it must be no
greater than and also within a factor of of , so that

 (35.22)

You can think of such a as <representing= in the new list . Each removed
element is represented by a remaining element satisfying inequality (35.22).
For example, suppose that and

Then trimming results in

35.5 The subset-sum problem 1127

where the deleted value is represented by , the deleted values and
are represented by , and the deleted value is represented by . Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The procedure TRIM trims list in time, given and
the trimming parameter . It assumes that is sorted into monotonically increasing
order. The output of the procedure is a trimmed, sorted list. The procedure scans
the elements of in monotonically increasing order. A number is appended onto
the returned list only if it is the ûrst element of or if it cannot be represented
by the most recent number placed into .

TRIM
1 let be the length of
2
3 last
4 for to
5 if last // last because is sorted
6 append onto the end of
7 last
8 return

Given the procedure TRIM, the procedure APPROX-SUBSET-SUM on the fol-
lowing page implements the approximation scheme. This procedure takes as input
a set of integers (in arbitrary order), the size , the
target integer , and an approximation parameter , where

 (35.23)

It returns a value whose value is within a factor of of the optimal solution.
The APPROX-SUBSET-SUM procedure works as follows. Line 1 initializes the

list to be the list containing just the element . The for loop in lines 235 com-
putes as a sorted list containing a suitably trimmed version of the set , with
all elements larger than removed. Since the procedure creates from , it
must ensure that the repeated trimming doesn’t introduce too much compounded
inaccuracy. That’s why instead of the trimming parameter being in the call to
TRIM, it has the smaller value . We’ll soon see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

1128 Chapter 35 Approximation Algorithms

APPROX-SUBSET-SUM
1
2 for to
3 MERGE-LISTS
4 TRIM
5 remove from every element that is greater than
6 let be the largest value in
7 return

As an example, suppose that APPROX-SUBSET-SUM is given

with and . The trimming parameter is .
The procedure computes the following values on the indicated lines:

line 1:

line 3:
line 4:
line 5:

line 3:
line 4:
line 5:

line 3:
line 4:
line 5:

line 3:
line 4:
line 5:

The procedure returns as its answer, which is well within % of
the optimal answer . In fact, it is within %.

Theorem 35.7
APPROX-SUBSET-SUM is a fully polynomial-time approximation scheme for the
subset-sum problem.

35.5 The subset-sum problem 1129

Proof The operations of trimming in line 4 and removing from every ele-
ment that is greater than maintain the property that every element of is also a
member of . Therefore, the value returned in line 7 is indeed the sum of some
subset of , that is, . Let denote an optimal solution to the subset-
sum problem, so that it is the greatest value in that is less than or equal to .
Because line 5 ensures that , we know that . By inequality (35.1),
we need to show that . We must also show that the running time of
this algorithm is polynomial in both and the size of the input.
As Exercise 35.5-2 asks you to show, for every element in that is at most ,

there exists an element such that

 (35.24)

Inequality (35.24) must hold for , and therefore there exists an element
 such that

and thus

 (35.25)

Since there exists an element fulûlling inequality (35.25), the inequality
must hold for , which is the largest value in , which is to say

 (35.26)

Now we show that . We do so by showing that .
First, inequality (35.23), , implies that

 (35.27)

Next, from equation (3.16) on page 66, we have lim .
Exercise 35.5-3 asks you to show that

 (35.28)

Therefore, the function increases with as it approaches its limit
of , and we have

 (by inequality (3.15) on page 66)
 (by inequality (35.27)) . (35.29)

1130 Chapter 35 Approximation Algorithms

Combining inequalities (35.26) and (35.29) completes the analysis of the approxi-
mation ratio.

To show that APPROX-SUBSET-SUM is a fully polynomial-time approximation
scheme, we derive a bound on the length of . After trimming, successive ele-
ments and of must have the relationship . That is, they must
differ by a factor of at least . Each list, therefore, contains the value ,
possibly the value , and up to log additional values. The number of
elements in each list is at most

log
ln

ln

 ln

 (by inequality (3.23) on page 67)

 ln

 (by inequality (35.23),) .

This bound is polynomial in the size of the input4which is the number of bits lg
needed to represent plus the number of bits needed to represent the set , which in
turn is polynomial in 4and in . Since the running time of APPROX-SUBSET-
SUM is polynomial in the lengths of the lists , we conclude that APPROX-
SUBSET-SUM is a fully polynomial-time approximation scheme.

Exercises

35.5-1
Prove equation (35.21). Then show that after executing line 4 of EXACT-SUBSET-
SUM, is a sorted list containing every element of whose value is not more
than .

35.5-2
Using induction on , prove inequality (35.24).

35.5-3
Prove inequality (35.28).

35.5-4
How can you modify the approximation scheme presented in this section to ûnd
a good approximation to the smallest value not less than that is a sum of some
subset of the given input list?

35.5-5
Modify the APPROX-SUBSET-SUM procedure to also return the subset of that
sums to the value .

Problems for Chapter 35 1131

Problems

35-1 Bin packing
You are given a set of objects, where the size of the th object satisûes

 . Your goal is to pack all the objects into the minimum number of unit-
size bins. Each bin can hold any subset of the objects whose total size does not
exceed .
a. Prove that the problem of determining the minimum number of bins required is

NP-hard. (Hint: Reduce from the subset-sum problem.)
The ûrst-ût heuristic takes each object in turn and places it into the ûrst bin that
can accommodate it, as follows. It maintains an ordered list of bins. Let denote
the number of bins in the list, where increases over the course of the algorithm,
and let be the list of bins. Initially and the list is empty.
The algorithm takes each object in turn and places it in the lowest-numbered
bin that can still accommodate it. If no bin can accommodate object , then is
incremented and a new bin is opened, containing object . Let

 .

b. Argue that the optimal number of bins required is at least .

c. Argue that the ûrst-ût heuristic leaves at most one bin at most half full.

d. Prove that the number of bins used by the ûrst-ût heuristic never exceeds .

e. Prove an approximation ratio of for the ûrst-ût heuristic.

f. Give an efûcient implementation of the ûrst-ût heuristic, and analyze its running
time.

35-2 Approximating the size of a maximum clique
Let be an undirected graph. For any , deûne to be the undi-
rected graph , where is the set of all ordered -tuples of vertices
from and is deûned so that is adjacent to
if and only if for , either vertex is adjacent to in , or else

 .
a. Prove that the size of the maximum clique in is equal to the th power of

the size of the maximum clique in .

b. Argue that if there is an approximation algorithm that has a constant approxi-
mation ratio for ûnding a maximum-size clique, then there is a polynomial-time
approximation scheme for the problem.

1132 Chapter 35 Approximation Algorithms

35-3 Weighted set-covering problem
Suppose that sets have weights in the set-covering problem, so that each set in
the family has an associated weight . The weight of a cover is

 .

The goal is wish to determine a minimum-weight cover. (Section 35.3 handles the
case in which for all .)
Show how to generalize the greedy set-covering heuristic in a natural manner

to provide an approximate solution for any instance of the weighted set-covering
problem. Letting be the maximum size of any set , show that your heuristic
has an approximation ratio of

 .

35-4 Maximum matching
Recall that for an undirected graph , a matching is a set of edges such that no
two edges in the set are incident on the same vertex. Section 25.1 showed how
to ûnd a maximum matching in a bipartite graph, that is, a matching such that no
other matching in contains more edges. This problem examines matchings in
undirected graphs that are not required to be bipartite.

a. Show that a maximal matching need not be a maximum matching by exhibiting
an undirected graph and a maximal matching in that is not a maximum
matching. (Hint: You can ûnd such a graph with only four vertices.)

b. Consider a connected, undirected graph . Give an -time
greedy algorithm to ûnd a maximal matching in .

This problem concentrates on a polynomial-time approximation algorithm for max-
imum matching. Whereas the fastest known algorithm for maximum matching
takes superlinear (but polynomial) time, the approximation algorithm here will run
in linear time. You will show that the linear-time greedy algorithm for maximal
matching in part (b) is a -approximation algorithm for maximum matching.

c. Show that the size of a maximum matching in is a lower bound on the size
of any vertex cover for .

d. Consider a maximal matching in . Let some edge
in is incident on . What can you say about the subgraph of induced by
the vertices of that are not in ?

e. Conclude from part (d) that is the size of a vertex cover for .

f. Using parts (c) and (e), prove that the greedy algorithm in part (b) is a -approx-
imation algorithm for maximum matching.

Problems for Chapter 35 1133

35-5 Parallel machine scheduling
In the parallel-machine-scheduling problem, the input has two parts: jobs,

 , where each job has an associated nonnegative processing time
of , and identical machines, . Any job can run on any ma-
chine. A schedule speciûes, for each job , the machine on which it runs and the
time period during which it runs. Each job must run on some machine for

 consecutive time units, and during that time period no other job may run on .
Let denote the completion time of job , that is, the time at which job
completes processing. Given a schedule, deûne max max to
be the makespan of the schedule. The goal is to ûnd a schedule whose makespan
is minimum.

For example, consider an input with two machines and , and four jobs
 , , , and with , , , and . Then one possible

schedule runs, on machine , job followed by job , and on machine ,
job followed by job . For this schedule, , , , ,
and max . An optimal schedule runs job on machine and jobs , ,
and on machine . For this schedule, we have , , , and

 , and so max .
Given the input to a parallel-machine-scheduling problem, let

max denote the
makespan of an optimal schedule.
a. Show that the optimal makespan is at least as large as the greatest processing

time, that is,

max max

b. Show that the optimal makespan is at least as large as the average machine load,
that is,

max

Consider the following greedy algorithm for parallel machine scheduling: when-
ever a machine is idle, schedule any job that has not yet been scheduled.
c. Write pseudocode to implement this greedy algorithm. What is the running

time of your algorithm?

d. For the schedule returned by the greedy algorithm, show that

 max

 max

Conclude that this algorithm is a polynomial-time -approximation algorithm.

1134 Chapter 35 Approximation Algorithms

35-6 Approximating a maximum spanning tree
Let be an undirected graph with distinct edge weights on each
edge . For each vertex , denote by max the maximum-weight
edge incident on that vertex. Let max be the set of maximum-
weight edges incident on each vertex, and let be the maximum-weight spanning
tree of , that is, the spanning tree of maximum total weight. For any subset of
edges , deûne

 .

a. Give an example of a graph with at least vertices for which .

b. Give an example of a graph with at least vertices for which .

c. Prove that for any graph .

d. Prove that for any graph .

e. Give an -time algorithm to compute a -approximation to the maxi-
mum spanning tree.

35-7 An approximation algorithm for the 0-1 knapsack problem
Recall the knapsack problem from Section 15.2. The input includes items, where
the th item is worth dollars and weighs pounds. The input also includes the
capacity of a knapsack, which is pounds. Here, we add the further assumptions
that each weight is at most and that the items are indexed in monotonically
decreasing order of their values: .
In the 0-1 knapsack problem, the goal is to ûnd a subset of the items whose total

weight is at most and whose total value is maximum. The fractional knapsack
problem is like the 0-1 knapsack problem, except that a fraction of each item may
be put into the knapsack, rather than either all or none of each item. If a fraction
of item goes into the knapsack, where , it contributes to the
weight of the knapsack and adds value . The goal of this problem is to develop
a polynomial-time -approximation algorithm for the 0-1 knapsack problem.
In order to design a polynomial-time algorithm, let’s consider restricted in-

stances of the 0-1 knapsack problem. Given an instance of the knapsack problem,
form restricted instances , for , by removing items
and requiring the solution to include item (all of item in both the fractional and
0-1 knapsack problems). No items are removed in instance . For instance ,
let denote an optimal solution to the 0-1 problem and denote an optimal
solution to the fractional problem.

a. Argue that an optimal solution to instance of the 0-1 knapsack problem is one
of .

Notes for Chapter 35 1135

b. Prove that to ûnd an optimal solution to the fractional problem for in-
stance , you can include item and then use the greedy algorithm in which
each step takes as much as possible of the unchosen item with the maximum
value per pound in the set .

c. Prove that there is always an optimal solution to the fractional problem for
instance that includes at most one item fractionally. That is, for all items
except possibly one, either all of the item or none of the item goes into the
knapsack.

d. Given an optimal solution to the fractional problem for instance , form
solution from by deleting any fractional items from . Let denote
the total value of items taken in a solution . Prove that

 .

e. Give a polynomial-time algorithm that returns a maximum-value solution from
the set , and prove that your algorithm is a polynomial-time
-approximation algorithm for the 0-1 knapsack problem.

Chapter notes

Although methods that do not necessarily compute exact solutions have been
known for thousands of years (for example, methods to approximate the value
of), the notion of an approximation algorithm is much more recent. Hochbaum
[221] credits Garey, Graham, and Ullman [175] and Johnson [236] with formal-
izing the concept of a polynomial-time approximation algorithm. The ûrst such
algorithm is often credited to Graham [197].

Since this early work, thousands of approximation algorithms have been de-
signed for a wide range of problems, and there is a wealth of literature on this ûeld.
Texts by Ausiello et al. [29], Hochbaum [221], Vazirani [446], and Williamson and
Shmoys [459] deal exclusively with approximation algorithms, as do surveys by
Shmoys [409] and Klein and Young [256]. Several other texts, such as Garey and
Johnson [176] and Papadimitriou and Steiglitz [353], have signiûcant coverage of
approximation algorithms as well. Books edited by Lawler, Lenstra, Rinnooy Kan,
and Shmoys [277] and by Gutin and Punnen [204] provide extensive treatments of
approximation algorithms and heuristics for the traveling-salesperson problem.

Papadimitriou and Steiglitz attribute the algorithm APPROX-VERTEX-COVER
to F. Gavril and M. Yannakakis. The vertex-cover problem has been studied exten-
sively (Hochbaum [221] lists different approximation algorithms for this prob-
lem), but all the approximation ratios are at least .

1136 Chapter 35 Approximation Algorithms

The algorithm APPROX-TSP-TOUR appears in a paper by Rosenkrantz, Stearns,
and Lewis [384]. Christoûdes improved on this algorithm and gave a -approxi-
mation algorithm for the traveling-salesperson problem with the triangle inequality.
Arora [23] and Mitchell [330] have shown that if the points lie in the euclidean
plane, there is a polynomial-time approximation scheme. Theorem 35.3 is due to
Sahni and Gonzalez [392].

The algorithm APPROX-SUBSET-SUM and its analysis are loosely modeled after
related approximation algorithms for the knapsack and subset-sum problems by
Ibarra and Kim [234].
Problem 35-7 is a combinatorial version of a more general result on approximat-

ing knapsack-type integer programs by Bienstock and McClosky [55].
The randomized algorithm for MAX-3-CNF satisûability is implicit in the work

of Johnson [236]. The weighted vertex-cover algorithm is by Hochbaum [220].
Section 35.4 only touches on the power of randomization and linear programming
in the design of approximation algorithms. A combination of these two ideas yields
a technique called <randomized rounding,= which formulates a problem as an in-
teger linear program, solves the linear-programming relaxation, and interprets the
variables in the solution as probabilities. These probabilities then help guide the
solution of the original problem. This technique was ûrst used by Raghavan and
Thompson [374], and it has had many subsequent uses. (See Motwani, Naor, and
Raghavan [335] for a survey.) Several other notable ideas in the ûeld of approxi-
mation algorithms include the primal-dual method (see Goemans and Williamson
[184] for a survey), ûnding sparse cuts for use in divide-and-conquer algorithms
[288], and the use of semideûnite programming [183].
As mentioned in the chapter notes for Chapter 34, results in probabilistically

checkable proofs have led to lower bounds on the approximability of many prob-
lems, including several in this chapter. In addition to the references there, the
chapter by Arora and Lund [26] contains a good description of the relationship
between probabilistically checkable proofs and the hardness of approximating var-
ious problems.

