
35 Approximation Algorithms 

Many problems of practical signiûcance are NP-complete, yet they are too impor- 
tant to abandon merely because nobody knows how to ûnd an optimal solution in 
polynomial time. Even if a problem is NP-complete, there may be hope. You have 
at least three options to get around NP-completeness. First, if the actual inputs are 
small, an algorithm with exponential running time might be fast enough. Second, 
you might be able to isolate important special cases that you can solve in polyno- 
mial time. Third, you can try to devise an approach to ûnd a near-optimal solution 
in polynomial time (either in the worst case or the expected case). In practice, near- 
optimality is often good enough. We call an algorithm that returns near-optimal 
solutions an approximation algorithm. This chapter presents polynomial-time ap- 
proximation algorithms for several NP-complete problems. 

Performance ratios for approximation algorithms 

Suppose that you are working on an optimization problem in which each potential 
solution has a positive cost, and you want to ûnd a near-optimal solution. Depend- 
ing on the problem, you could deûne an optimal solution as one with maximum 
possible cost or as one with minimum possible cost, which is to say that the prob- 
lem might be either a maximization or a minimization problem. 

We say that an algorithm for a problem has an approximation ratio of  if, 
for any input of size , the cost  of the solution produced by the algorithm is 
within a factor of  of the cost   of an optimal solution: 

max 
 

 
   

  

 

 
   (35.1) 

If an algorithm achieves an approximation ratio of , we call it a -approxi- 
mation algorithm. The deûnitions of approximation ratio and -approximation 
algorithm apply to both minimization and maximization problems. For a maxi- 
mization problem,     , and the ratio    gives the factor by which 
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the cost of an optimal solution is larger than the cost of the approximate solution. 
Similarly, for a minimization problem,     , and the ratio   gives the 
factor by which the cost of the approximate solution is larger than the cost of an 
optimal solution. Because we assume that all solutions have positive cost, these 
ratios are always well deûned. The approximation ratio of an approximation al- 
gorithm is never less than , since     implies     . Therefore, 
a -approximation algorithm 1 produces an optimal solution, and an approximation 
algorithm with a large approximation ratio may return a solution that is much worse 
than optimal. 
For many problems, we know of polynomial-time approximation algorithms 

with small constant approximation ratios, although for other problems, the best 
known polynomial-time approximation algorithms have approximation ratios that 
grow as functions of the input size . An example of such a problem is the set-cover 
problem presented in Section 35.3. 
Some polynomial-time approximation algorithms can achieve increasingly bet- 

ter approximation ratios by using more and more computation time. For such 
problems, you can trade computation time for the quality of the approximation. 
An example is the subset-sum problem studied in Section 35.5. This situation is 
important enough to deserve a name of its own. 

An approximation scheme for an optimization problem is an approximation al- 
gorithm that takes as input not only an instance of the problem, but also a value 

 such that for any ûxed  , the scheme is a   -approximation algorithm. 
We say that an approximation scheme is a polynomial-time approximation scheme 
if for any ûxed , the scheme runs in time polynomial in the size  of its input 
instance. 
The running time of a polynomial-time approximation scheme can increase very 

rapidly as  decreases. For example, the running time of a polynomial-time ap- 
proximation scheme might be   . Ideally, if  decreases by a constant factor, 
the running time to achieve the desired approximation should not increase by more 
than a constant factor (though not necessarily the same constant factor by which  
decreased). 

We say that an approximation scheme is a fully polynomial-time approximation 
scheme if it is an approximation scheme and its running time is polynomial in 
both  and the size  of the input instance. For example, the scheme might have 
a running time of     . With such a scheme, any constant-factor decrease 
in  comes with a corresponding constant-factor increase in the running time. 

 When the approximation ratio is independent of , we use the terms <approximation ratio of = 
and < -approximation algorithm,= indicating no dependence on . 
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Chapter outline 

The ûrst four sections of this chapter present some examples of polynomial-time 
approximation algorithms for NP-complete problems, and the ûfth section gives 
a fully polynomial-time approximation scheme. We begin in Section 35.1 with a 
study of the vertex-cover problem, an NP-complete minimization problem that has 
an approximation algorithm with an approximation ratio of . Section 35.2 looks at 
a version of the traveling-salesperson problem in which the cost function satisûes 
the triangle inequality and presents an approximation algorithm with an approxi- 
mation ratio of . The section also shows that without the triangle inequality, for 
any constant   , a -approximation algorithm cannot exist unless P  NP. 
Section 35.3 applies a greedy method as an effective approximation algorithm for 
the set-covering problem, obtaining a covering whose cost is at worst a logarithmic 
factor larger than the optimal cost. Section 35.4 uses randomization and linear pro- 
gramming to develop two more approximation algorithms. The section ûrst deûnes 
the optimization version of 3-CNF satisûability and gives a simple randomized 
algorithm that produces a solution with an expected approximation ratio of . 
Then Section 35.4 examines a weighted variant of the vertex-cover problem and 
exhibits how to use linear programming to develop a -approximation algorithm. 
Finally, Section 35.5 presents a fully polynomial-time approximation scheme for 
the subset-sum problem. 

35.1 The vertex-cover problem 

Section 34.5.2 deûned the vertex-cover problem and proved it NP-complete. Recall 
that a vertex cover of an undirected graph    is a subset     such 
that if  is an edge of , then either     or     (or both). The size of a 
vertex cover is the number of vertices in it. 

The vertex-cover problem is to ûnd a vertex cover of minimum size in a given 
undirected graph. We call such a vertex cover an optimal vertex cover. This prob- 
lem is the optimization version of an NP-complete decision problem. 
Even though nobody knows how to ûnd an optimal vertex cover in a graph  in 

polynomial time, there is an efûcient algorithm to ûnd a vertex cover that is near- 
optimal. The approximation algorithm APPROX-VERTEX-COVER on the facing 
page takes as input an undirected graph  and returns a vertex cover whose size is 
guaranteed to be no more than twice the size of an optimal vertex cover. 
Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example 

graph. The variable  contains the vertex cover being constructed. Line 1 initial- 
izes  to the empty set. Line 2 sets   to be a copy of the edge set  E of the 
graph. The while loop of lines 336 repeatedly picks an edge  from   , adds 
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APPROX-VERTEX-COVER  
1   
2     E 
3 while    
4 let  be an arbitrary edge of   
5     
6 remove from   edge  and every edge incident on either  or  
7 return  

its endpoints  and  into  , and deletes all edges in   that  or  covers. Finally, 
line 7 returns the vertex cover  . The running time of this algorithm is   , 
using adjacency lists to represent   . 

Theorem 35.1 
APPROX-VERTEX-COVER is a polynomial-time -approximation algorithm. 

Proof We have already shown that APPROX-VERTEX-COVER runs in polyno- 
mial time. 

The set  of vertices that is returned by APPROX-VERTEX-COVER is a vertex 
cover, since the algorithm loops until every edge in  E has been covered by some 
vertex in  . 

To see that APPROX-VERTEX-COVER returns a vertex cover that is at most twice 
the size of an optimal cover, let  denote the set of edges that line 4 of APPROX- 
VERTEX-COVER picked. In order to cover the edges in , any vertex cover4in 
particular, an optimal cover   4must include at least one endpoint of each edge 
in . No two edges in  share an endpoint, since once an edge is picked in line 4, 
all other edges that are incident on its endpoints are deleted from   in line 6. Thus, 
no two edges in  are covered by the same vertex from   , meaning that for every 
vertex in   , there is at most one edge in , giving the lower bound 

   (35.2) 
on the size of an optimal vertex cover. Each execution of line 4 picks an edge for 
which neither of its endpoints is already in  , yielding an upper bound (an exact 
upper bound, in fact) on the size of the vertex cover returned: 

     (35.3) 
Combining equations (35.2) and (35.3) yields 

    
      

thereby proving the theorem. 
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Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph , which has  
vertices and  edges. (b) The highlighted edge  is the ûrst edge chosen by APPROX-VERTEX- 
COVER. Vertices  and , in blue, are added to the set  containing the vertex cover being created. 
Dashed edges , , and  are removed since they are now covered by some vertex 
in  . (c) Edge  is chosen, and vertices  and  are added to  . (d) Edge  is cho- 
sen, and vertices  and  are added to  . (e) The set  , which is the vertex cover produced by 
APPROX-VERTEX-COVER, contains the six vertices . (f) The optimal vertex cover for 
this problem contains only three vertices: ,  , and . 

Let us reüect on this proof. At ûrst, you might wonder how you can possibly 
prove that the size of the vertex cover returned by APPROX-VERTEX-COVER is at 
most twice the size of an optimal vertex cover, when you don’t even know the size 
of an optimal vertex cover. Instead of requiring that you know the exact size of an 
optimal vertex cover, you ûnd a lower bound on the size. As Exercise 35.1-2 asks 
you to show, the set  of edges that line 4 of APPROX-VERTEX-COVER selects is 
actually a maximal matching in the graph . (A maximal matching is a matching 
to which no edges can be added and still have a matching.) The size of a maximal 
matching is, as we argued in the proof of Theorem 35.1, a lower bound on the size 
of an optimal vertex cover. The algorithm returns a vertex cover whose size is at 
most twice the size of the maximal matching . The approximation ratio comes 
from relating the size of the solution returned to the lower bound. We will use this 
methodology in later sections as well. 
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Exercises 

35.1-1 
Give an example of a graph for which APPROX-VERTEX-COVER always yields a 
suboptimal solution. 

35.1-2 
Prove that the set of edges picked in line 4 of APPROX-VERTEX-COVER forms a 
maximal matching in the graph . 

 35.1-3 
Consider the following heuristic to solve the vertex-cover problem. Repeatedly 
select a vertex of highest degree, and remove all of its incident edges. Give an 
example to show that this heuristic does not provide an approximation ratio of . 
(Hint: Try a bipartite graph with vertices of uniform degree on the left and vertices 
of varying degree on the right.) 

35.1-4 
Give an efûcient greedy algorithm that ûnds an optimal vertex cover for a tree in 
linear time. 

35.1-5 
The proof of Theorem 34.12 on page 1084 illustrates that the vertex-cover problem 
and the NP-complete clique problem are complementary in the sense that an opti- 
mal vertex cover is the complement of a maximum-size clique in the complement 
graph. Does this relationship imply that there is a polynomial-time approximation 
algorithm with a constant approximation ratio for the clique problem? Justify your 
answer. 

35.2 The traveling-salesperson problem 

The input to the traveling-salesperson problem, introduced in Section 34.5.4, is a 
complete undirected graph    that has a nonnegative integer cost  
associated with each edge   . The goal is to ûnd a hamiltonian cycle (a 
tour) of  with minimum cost. As an extension of our notation, let  denote 
the total cost of the edges in the subset   : 
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In many practical situations, the least costly way to go from a place  to a place  
is to go directly, with no intermediate steps. Put another way, cutting out an inter- 
mediate stop never increases the cost. Such a cost function  satisûes the triangle 
inequality: for all vertices    , 

     

The triangle inequality seems as though it should naturally hold, and it is au- 
tomatically satisûed in several applications. For example, if the vertices of the 
graph are points in the plane and the cost of traveling between two vertices is the 
ordinary euclidean distance between them, then the triangle inequality is satisûed. 
Furthermore, many cost functions other than euclidean distance satisfy the triangle 
inequality. 
As Exercise 35.2-2 shows, the traveling-salesperson problem is NP-complete 

even if you require the cost function to satisfy the triangle inequality. Thus, you 
should not expect to ûnd a polynomial-time algorithm for solving this problem ex- 
actly. Your time would be better spent looking for good approximation algorithms. 
In Section 35.2.1, we examine a -approximation algorithm for the traveling- 

salesperson problem with the triangle inequality. In Section 35.2.2, we show that 
without the triangle inequality, a polynomial-time approximation algorithm with a 
constant approximation ratio does not exist unless P  NP. 

35.2.1 The traveling-salesperson problem with the triangle inequality 

Applying the methodology of the previous section, start by computing a structure 
4a minimum spanning tree4whose weight gives a lower bound on the length of 
an optimal traveling-salesperson tour. Then use the minimum spanning tree to cre- 
ate a tour whose cost is no more than twice that of the minimum spanning tree’s 
weight, as long as the cost function satisûes the triangle inequality. The proce- 
dure APPROX-TSP-TOUR on the next page implements this approach, calling the 
minimum-spanning-tree algorithm MST-PRIM on page 596 as a subroutine. The 
parameter  is a complete undirected graph, and the cost function  satisûes the 
triangle inequality. 
Recall from Section 12.1 that a preorder tree walk recursively visits every vertex 

in the tree, listing a vertex when it is ûrst encountered, before visiting any of its 
children. 
Figure 35.2 illustrates the operation of APPROX-TSP-TOUR. Part (a) of the ûg- 

ure shows a complete undirected graph, and part (b) shows the minimum spanning 
tree  grown from root vertex  by MST-PRIM. Part (c) shows how a preorder 
walk of  visits the vertices, and part (d) displays the corresponding tour, which is 
the tour returned by APPROX-TSP-TOUR. Part (e) displays an optimal tour, which 
is about % shorter. 
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Figure 35.2 The operation of APPROX-TSP-TOUR. (a) A complete undirected graph. Vertices lie 
on intersections of integer grid lines. For example,  is one unit to the right and two units up from . 
The cost function between two points is the ordinary euclidean distance. (b) A minimum spanning 
tree  of the complete graph, as computed by MST-PRIM. Vertex  is the root vertex. Only edges 
in the minimum spanning tree are shown. The vertices happen to be labeled in such a way that they 
are added to the main tree by MST-PRIM in alphabetical order. (c) A walk of  , starting at . A 
full walk of the tree visits the vertices in the order . A preorder 
walk of  lists a vertex just when it is ûrst encountered, as indicated by the dot next to each vertex, 
yielding the ordering . (d) A tour obtained by visiting the vertices in the order 
given by the preorder walk, which is the tour  returned by APPROX-TSP-TOUR. Its total cost 
is approximately . (e) An optimal tour   for the original complete graph. Its total cost is 
approximately . 

APPROX-TSP-TOUR  
1 select a vertex    V to be a <root= vertex 
2 compute a minimum spanning tree  for  from root  

using MST-PRIM  
3 let  be a list of vertices, ordered according to when they are ûrst visited 

in a preorder tree walk of  
4 return the hamiltonian cycle  
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By Exercise 21.2-2, even with a simple implementation of MST-PRIM, the run- 
ning time of APPROX-TSP-TOUR is   . We now show that if the cost function 
for an instance of the traveling-salesperson problem satisûes the triangle inequal- 
ity, then APPROX-TSP-TOUR returns a tour whose cost is at most twice the cost 
of an optimal tour. 

Theorem 35.2 
When the triangle inequality holds, APPROX-TSP-TOUR is a polynomial-time 
-approximation algorithm for the traveling-salesperson problem. 

Proof We have already seen that APPROX-TSP-TOUR runs in polynomial time. 
Let   denote an optimal tour for the given set of vertices. Deleting any edge 

from a tour yields a spanning tree, and each edge cost is nonnegative. Therefore, 
the weight of the minimum spanning tree  computed in line 2 of APPROX-TSP- 
TOUR provides a lower bound on the cost of an optimal tour: 

     (35.4) 

A full walk of  lists the vertices when they are ûrst visited and also whenever 
they are returned to after a visit to a subtree. Let’s call this full walk  . The full 
walk of our example gives the order 

 

Since the full walk traverses every edge of  exactly twice, by extending the deû- 
nition of the cost  in the natural manner to handle multisets of edges, we have 

   (35.5) 

Inequality (35.4) and equation (35.5) imply that 

     (35.6) 

and so the cost of  is within a factor of  of the cost of an optimal tour. 
Of course, the full walk  is not a tour, since it visits some vertices more than 

once. By the triangle inequality, however, deleting a visit to any vertex from  
does not increase the cost. (When a vertex  is deleted from  between visits to 

 and , the resulting ordering speciûes going directly from  to .) Repeatedly 
apply this operation on each visit to a vertex after the ûrst time it’s visited in  , so 
that  is left with only the ûrst visit to each vertex. In our example, this process 
leaves the ordering 

 

This ordering is the same as that obtained by a preorder walk of the tree  . Let  
be the cycle corresponding to this preorder walk. It is a hamiltonian cycle, since ev- 
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ery vertex is visited exactly once, and in fact it is the cycle computed by APPROX- 
TSP-TOUR. Since  is obtained by deleting vertices from the full walk  , we 
have 

   (35.7) 
Combining inequalities (35.6) and (35.7) gives     , which completes 
the proof. 

Despite the small approximation ratio provided by Theorem 35.2, APPROX- 
TSP-TOUR is usually not the best practical choice for this problem. There are other 
approximation algorithms that typically perform much better in practice. (See the 
references at the end of this chapter.) 

35.2.2 The general traveling-salesperson problem 

When the cost function  does not satisfy the triangle inequality, there is no way to 
ûnd good approximate tours in polynomial time unless P  NP. 

Theorem 35.3 
If P  NP, then for any constant   , there is no polynomial-time approxi- 
mation algorithm with approximation ratio  for the general traveling-salesperson 
problem. 

Proof The proof is by contradiction. Suppose to the contrary that for some num- 
ber   , there is a polynomial-time approximation algorithm  with approxima- 
tion ratio . Without loss of generality, assume that  is an integer, by rounding it 
up if necessary. We will show how to use  to solve instances of the hamiltonian- 
cycle problem (deûned in Section 34.2) in polynomial time. Since Theorem 34.13 
on page 1085 says that the hamiltonian-cycle problem is NP-complete, Theo- 
rem 34.4 on page 1063 implies that if it has a polynomial-time algorithm, then 
P  NP. 

Let    be an instance of the hamiltonian-cycle problem. We will show 
how to determine efûciently whether  contains a hamiltonian cycle by making 
use of the hypothesized approximation algorithm . Convert  into an instance of 
the traveling-salesperson problem as follows. Let       be the complete 
graph on  , that is, 

       and     

Assign an integer cost to each edge in   as follows: 

  

 
 if    
    otherwise  
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Given a representation of , it takes time polynomial in   and  to create 
representations of   and  . 
Now consider the traveling-salesperson problem   . If the original graph  

has a hamiltonian cycle  , then the cost function  assigns to each edge of  a 
cost of , and so    contains a tour of cost  . On the other hand, if  does 
not contain a hamiltonian cycle, then any tour of   must use some edge not in . 
But any tour that uses an edge not in  has a cost of at least 

             
    

Because edges not in  are so costly, there is a gap of at least    between the cost 
of a tour that is a hamiltonian cycle in  (cost  ) and the cost of any other tour 
(cost at least    ). Therefore, the cost of a tour that is not a hamiltonian 
cycle in  is at least a factor of    greater than the cost of a tour that is a 
hamiltonian cycle in . 

What happens upon applying the approximation algorithm  to the traveling- 
salesperson problem   ? Because  is guaranteed to return a tour of cost no 
more than  times the cost of an optimal tour, if  contains a hamiltonian cycle, 
then  must return it. If  has no hamiltonian cycle, then  returns a tour of 
cost more than   . Therefore, using  solves the hamiltonian-cycle problem in 
polynomial time. 

The proof of Theorem 35.3 serves as an example of a general technique to prove 
that no good approximation algorithm exists for a particular problem. Given an 
NP-hard decision problem  , produce in polynomial time a minimization prob- 
lem  such that <yes= instances of  correspond to instances of  with value at 
most  (for some ), but that <no= instances of  correspond to instances of  
with value greater than . This technique shows that, unless P  NP, there is no 
polynomial-time -approximation algorithm for problem  . 

Exercises 

35.2-1 
Let    be a complete undirected graph containing at least  vertices, and 
let  be a cost function that satisûes the triangle inequality. Prove that    
for all    . 

35.2-2 
Show how in polynomial time to transform one instance of the traveling-sales- 
person problem into another instance whose cost function satisûes the triangle in- 
equality. The two instances must have the same set of optimal tours. Explain why 
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such a polynomial-time transformation does not contradict Theorem 35.3, assum- 
ing that P  NP. 

35.2-3 
Consider the following closest-point heuristic for building an approximate trav- 
eling-salesperson tour whose cost function satisûes the triangle inequality. Begin 
with a trivial cycle consisting of a single arbitrarily chosen vertex. At each step, 
identify the vertex  that is not on the cycle but whose distance to any vertex on the 
cycle is minimum. Suppose that the vertex on the cycle that is nearest  is vertex . 
Extend the cycle to include  by inserting  just after . Repeat until all vertices 
are on the cycle. Prove that this heuristic returns a tour whose total cost is not more 
than twice the cost of an optimal tour. 

35.2-4 
A solution to the bottleneck traveling-salesperson problem is the hamiltonian cy- 
cle that minimizes the cost of the most costly edge in the cycle. Assuming that the 
cost function satisûes the triangle inequality, show that there exists a polynomial- 
time approximation algorithm with approximation ratio  for this problem. (Hint: 
Show recursively how to visit all the nodes in a bottleneck spanning tree, as dis- 
cussed in Problem 21-4 on page 601, exactly once by taking a full walk of the tree 
and skipping nodes, but without skipping more than two consecutive intermedi- 
ate nodes. Show that the costliest edge in a bottleneck spanning tree has a cost 
bounded from above by the cost of the costliest edge in a bottleneck hamiltonian 
cycle.) 

35.2-5 
Suppose that the vertices for an instance of the traveling-salesperson problem are 
points in the plane and that the cost  is the euclidean distance between points 

 and . Show that an optimal tour never crosses itself. 

35.2-6 
Adapt the proof of Theorem 35.3 to show that for any constant   , there is no 
polynomial-time approximation algorithm with approximation ratio    for the 
general traveling-salesperson problem. 

35.3 The set-covering problem 

The set-covering problem is an optimization problem that models many problems 
that require resources to be allocated. Its corresponding decision problem gener- 
alizes the NP-complete vertex-cover problem and is therefore also NP-hard. The 
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approximation algorithm developed to handle the vertex-cover problem doesn’t ap- 
ply here, however. Instead, this section investigates a simple greedy heuristic with 
a logarithmic approximation ratio. That is, as the size of the instance gets larger, 
the size of the approximate solution may grow, relative to the size of an optimal 
solution. Because the logarithm function grows rather slowly, however, this ap- 
proximation algorithm may nonetheless give useful results. 

An instance    of the set-covering problem consists of a ûnite set  and 
a family  of subsets of  , such that every element of  belongs to at least one 
subset in  : 

  
 

 

 

We say that a subfamily    covers a set of elements  if 

  
 

 

 

The problem is to ûnd a minimum-size subfamily    whose members cover 
all of  : 

  
 

 

 

Figure 35.3 illustrates the set-covering problem. The size of  is the number of 
sets it contains, rather than the number of individual elements in these sets, since 
every subfamily  that covers  must contain all   individual elements. In 
Figure 35.3, the minimum set cover has size . 
The set-covering problem abstracts many commonly arising combinatorial prob- 

lems. As a simple example, suppose that  represents a set of skills that are needed 
to solve a problem and that you have a given set of people available to work on the 
problem. You wish to form a committee, containing as few people as possible, such 
that for every requisite skill in  , at least one member of the committee has that 
skill. The decision version of the set-covering problem asks whether a covering ex- 
ists with size at most , where  is an additional parameter speciûed in the problem 
instance. The decision version of the problem is NP-complete, as Exercise 35.3-2 
asks you to show. 

A greedy approximation algorithm 

The greedy method in the procedure GREEDY-SET-COVER on the facing page 
works by picking, at each stage, the set  that covers the greatest number of re- 
maining elements that are uncovered. In the example of Figure 35.3, GREEDY- 
SET-COVER adds to  , in order, the sets   ,   , and   , followed by either   
or   . 
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Figure 35.3 An instance    of the set-covering problem, where  consists of the  tan points 
and              . Each set     is outlined in blue. A minimum-size set cover 
is        , with size . The greedy algorithm produces a cover of size  by selecting either 
the sets   ,   ,   , and   or the sets   ,   ,   , and   , in order. 

GREEDY-SET-COVER    
1     
2   
3    
4 while    
5 select    that maximizes      
6         
7      
8      
9 return  

The greedy algorithm works as follows. At the start of each iteration,   is a 
subset of  containing the remaining uncovered elements, with the initial sub- 
set   containing all the elements in  . The set  contains the subfamily being 
constructed. Line 5 is the greedy decision-making step, choosing a subset  that 
covers as many uncovered elements as possible (breaking ties arbitrarily). After 

 is selected, line 6 updates the set of remaining uncovered elements, denoting 
it by    , and line 7 places  into  . When the algorithm terminates,  is a 
subfamily of  that covers  . 

Analysis 

We now show that the greedy algorithm returns a set cover that is not too much 
larger than an optimal set cover. 
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Theorem 35.4 
The procedure GREEDY-SET-COVER run on a set  and family of subsets  is a 
polynomial-time lg -approximation algorithm. 

Proof Let’s ûrst show that the algorithm runs in time that is polynomial in   
and  . The number of iterations of the loop in lines 437 is bounded above by 
min        . The loop body can be implemented to run in 

   time. Thus the algorithm runs in       time, which 
is polynomial in the input size. (Exercise 35.3-3 asks for a linear-time algorithm.) 

To prove the approximation bound, let   be an optimal set cover for the original 
instance   , and let    . Since   is also a set cover of each subset   
of  constructed by the algorithm, we know that any subset   constructed by the 
algorithm can be covered by  sets. Therefore, if      is an instance of the 
set-covering problem, its optimal set cover has size at most . 

If an optimal set cover for an instance      has size at most , at least one 
of the sets in  covers at least     new elements. Thus, line 5 of GREEDY- 
SET-COVER, which chooses a set with the maximum number of uncovered ele- 
ments, must choose a set in which the number of newly covered elements is at 
least    . These elements are removed when constructing    , giving 

         
      (35.8) 

Iterating inequality (35.8) gives 
     
        
               

and in general 
                (35.9) 

The algorithm stops when   , which means that    . Thus an upper 
bound on the number of iterations of the algorithm is the smallest value of  for 
which    . 

Since       for all real  (see inequality (3.14) on page 66), by letting 
 , we have       , so that           . 

Denoting the number  of iterations by  for some nonnegative integer  , we want 
 such that 

           (35.10) 
Multiplying both sides by   and then taking the natural logarithm of both sides 
gives   ln  , so we can choose for  any integer that is at least ln  . We 
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choose  ln  . Since    is an upper bound on the number of iterations, 
which equals the size of  , and    , we have           

  ln  , and the theorem follows. 

Exercises 

35.3-1 
Consider each of the following words as a set of letters: arid  dash  drain  
heard  lost  nose  shun  slate  snare  thread . Show which set cover 
GREEDY-SET-COVER produces when you break ties in favor of the word that ap- 
pears ûrst in the dictionary. 

35.3-2 
Show that the decision version of the set-covering problem is NP-complete by 
reducing the vertex-cover problem to it. 

35.3-3 
Show how to implement GREEDY-SET-COVER to run in  

  
   

 
time. 

35.3-4 
The proof of Theorem 35.4 says that when GREEDY-SET-COVER, run on the in- 
stance   , returns the subfamily  , then    ln  . Show that the 
following weaker bound is trivially true: 

    max        

35.3-5 
GREEDY-SET-COVER can return a number of different solutions, depending on 
how it breaks ties in line 5. Give a procedure BAD-SET-COVER-I NSTANCE  that 
returns an -element instance of the set-covering problem for which, depending 
on how line 5 breaks ties, GREEDY-SET-COVER can return a number of different 
solutions that is exponential in . 

35.4 Randomization and linear programming 

This section studies two useful techniques for designing approximation algorithms: 
randomization and linear programming. It starts with a simple randomized algo- 
rithm for an optimization version of 3-CNF satisûability, and then it shows how 
to design an approximation algorithm for a weighted version of the vertex-cover 
problem based on linear programming. This section only scratches the surface of 
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these two powerful techniques. The chapter notes give references for further study 
of these areas. 

A randomized approximation algorithm for MAX-3-CNF satisfiability 

Just as some randomized algorithms compute exact solutions, some randomized 
algorithms compute approximate solutions. We say that a randomized algorithm 
for a problem has an approximation ratio of  if, for any input of size , the 
expected cost  of the solution produced by the randomized algorithm is within a 
factor of  of the cost   of an optimal solution: 

max 
 

 
  

 
  

 

 
   (35.11) 

We call a randomized algorithm that achieves an approximation ratio of  a 
randomized -approximation algorithm. In other words, a randomized ap- 
proximation algorithm is like a deterministic approximation algorithm, except that 
the approximation ratio is for an expected cost. 
A particular instance of 3-CNF satisûability, as deûned in Section 34.4, may or 

may not be satisûable. In order to be satisûable, there must exist an assignment of 
the variables so that every clause evaluates to . If an instance is not satisûable, you 
might instead want to know how <close= to satisûable it is, that is, ûnd an assign- 
ment of the variables that satisûes as many clauses as possible. We call the resulting 
maximization problem MAX-3-CNF satisûability. The input to MAX-3-CNF sat- 
isûability is the same as for 3-CNF satisûability, and the goal is to return an assign- 
ment of the variables that maximizes the number of clauses evaluating to . You 
might be surprised that randomly setting each variable to  with probability  
and to  with probability  yields a randomized -approximation algorithm, 
but we’re about to see why. Recall that the deûnition of 3-CNF satisûability from 
Section 34.4 requires each clause to consist of exactly three distinct literals. We 
now further assume that no clause contains both a variable and its negation. Exer- 
cise 35.4-1 asks you to remove this last assumption. 

Theorem 35.5 
Given an instance of MAX-3-CNF satisûability with  variables       
and  clauses, the randomized algorithm that independently sets each variable to  
with probability  and to  with probability  is a randomized -approxi- 
mation algorithm. 

Proof Suppose that each variable is independently set to  with probability  
and to  with probability . Deûne, for   , the indicator random 
variable 
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   I clause  is satisûed   

so that     as long as at least one of the literals in the  th clause is set to . 
Since no literal appears more than once in the same clause, and since we assume 
that no variable and its negation appear in the same clause, the settings of the three 
literals in each clause are independent. A clause is not satisûed only if all three 
of its literals are set to , and so Pr clause  is not satisûed     . 
Thus, we have Pr clause  is satisûed      , and Lemma 5.1 on 
page 130 gives E     . Let  be the number of satisûed clauses overall, so 
that           . Then, we have 

E   E 
 

  

  

  

 

 
  

  

E    (by linearity of expectation) 

 
  

  

 

  

Since  is an upper bound on the number of satisûed clauses, the approximation 
ratio is at most   . 

Approximating weighted vertex cover using linear programming 

The minimum-weight vertex-cover problem takes as input an undirected graph 
   in which each vertex    has an associated positive weight . 

The weight    of a vertex cover     is the sum of the weights of its 
vertices:     

 
  . The goal is to ûnd a vertex cover of minimum 

weight. 
The approximation algorithm for unweighted vertex cover from Section 35.1 

won’t work here, because the solution it returns could be far from optimal for the 
weighted problem. Instead, we’ll ûrst compute a lower bound on the weight of the 
minimum-weight vertex cover, by using a linear program. Then we’ll <round= this 
solution and use it to obtain a vertex cover. 

Start by associating a variable  with each vertex    , and require that 
 equals either  or  for each    . The vertex cover includes  if and only if 
  . Then the constraint that for any edge , at least one of  and  must 

belong to the vertex cover can be expressed as     . This view gives 
rise to the following 0-1 integer program for ûnding a minimum-weight vertex 
cover: 
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minimize 
 

 

 (35.12) 

subject to 
     for each    (35.13) 

  for each    (35.14) 

In the special case in which all the weights  equal , this formulation is 
the optimization version of the NP-hard vertex-cover problem. Let’s remove the 
constraint that   and replace it by     , resulting in the 
following linear program: 

minimize 
 

 

 (35.15) 

subject to 
     for each    (35.16) 

   for each    (35.17) 
   for each    (35.18) 

We refer to this linear program as the linear-programming relaxation. Any fea- 
sible solution to the 0-1 integer program in lines (35.12)3(35.14) is also a feasible 
solution to its linear-programming relaxation in lines (35.15)3(35.18). Therefore, 
the value of an optimal solution to the linear-programming relaxation provides a 
lower bound on the value of an optimal solution to the 0-1 integer program, and 
hence a lower bound on the optimal weight in the minimum-weight vertex-cover 
problem. 

The procedure APPROX-MIN-WEIGHT-VC on the facing page starts with a so- 
lution to the linear-programming relaxation and uses it to construct an approximate 
solution to the minimum-weight vertex-cover problem. The procedure works as 
follows. Line 1 initializes the vertex cover to be empty. Line 2 formulates the 
linear-programming relaxation in lines (35.15)3(35.18) and then solves this linear 
program. An optimal solution gives each vertex  an associated value  , where 
    . The procedure uses this value to guide the choice of which vertices 

to add to the vertex cover  in lines 335: the vertex cover  includes vertex  if 
and only if    . In effect, the procedure <rounds= each fractional variable 
in the solution to the linear-programming relaxation to either  or  in order to ob- 
tain a solution to the 0-1 integer program in lines (35.12)3(35.14). Finally, line 6 
returns the vertex cover  . 

Theorem 35.6 
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time -approximation al- 
gorithm for the minimum-weight vertex-cover problem. 
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APPROX-MIN-WEIGHT-VC  
1   
2 compute  , an optimal solution to the linear-programming relaxation 

in lines (35.15)3(35.18) 
3 for each vertex    
4 if     
5     
6 return  

Proof Because there is a polynomial-time algorithm to solve the linear program 
in line 2, and because the for loop of lines 335 runs in polynomial time, APPROX- 
MIN-WEIGHT-VC is a polynomial-time algorithm. 

It remains to show that APPROX-MIN-WEIGHT-VC is a -approximation algo- 
rithm. Let   be an optimal solution to the minimum-weight vertex-cover prob- 
lem, and let   be the value of an optimal solution to the linear-programming relax- 
ation in lines (35.15)3(35.18). Since an optimal vertex cover is a feasible solution 
to the linear-programming relaxation,   must be a lower bound on   , that is, 

      (35.19) 
Next, we claim that rounding the fractional values of the variables   in lines 335 
produces a set  that is a vertex cover and satisûes     . To see that  is 
a vertex cover, consider any edge   . By constraint (35.16), we know that 

    , which implies that at least one of   and   is at least . 
Therefore, at least one of  and  is included in the vertex cover, and so every edge 
is covered. 

Now we consider the weight of the cover. We have 
   

 

 

   

 
 

     

   

 
 

     

  
 
 

 
 

 

  
 
 

 
 
 

 

 

 

 
 
 

 (35.20) 
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Combining inequalities (35.19) and (35.20) gives 

        

and hence APPROX-MIN-WEIGHT-VC is a -approximation algorithm. 

Exercises 

35.4-1 
Show that even if a clause is allowed to contain both a variable and its negation, 
randomly setting each variable to  with probability  and to  with probabil- 
ity  still yields a randomized -approximation algorithm. 

35.4-2 
The MAX-CNF satisûability problem is like the MAX-3-CNF satisûability prob- 
lem, except that it does not restrict each clause to have exactly three literals. Give a 
randomized -approximation algorithm for the MAX-CNF satisûability problem. 

35.4-3 
In the MAX-CUT problem, the input is an unweighted undirected graph   

. We deûne a cut    as in Chapter 21 and the weight of a cut 
as the number of edges crossing the cut. The goal is to ûnd a cut of maximum 
weight. Suppose that each vertex  is randomly and independently placed into  
with probability  and into    with probability . Show that this algorithm 
is a randomized -approximation algorithm. 

35.4-4 
Show that the constraints in line (35.17) are redundant in the sense that remov- 
ing them from the linear-programming relaxation in lines (35.15)3(35.18) yields a 
linear program for which any optimal solution  must satisfy    for each 

   . 

35.5 The subset-sum problem 

Recall from Section 34.5.5 that an instance of the subset-sum problem is given 
by a pair , where  is a set        of positive integers and  is a 
positive integer. This decision problem asks whether there exists a subset of  that 
adds up exactly to the target value  . As we saw in Section 34.5.5, this problem is 
NP-complete. 

The optimization problem associated with this decision problem arises in prac- 
tical applications. The optimization problem seeks a subset of        
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whose sum is as large as possible but not larger than  . For example, consider a 
truck that can carry no more than  pounds, which is to be loaded with up to  dif- 
ferent boxes, the  th of which weighs   pounds. How heavy a load can the truck 
take without exceeding the  -pound weight limit? 
We start this section with an exponential-time algorithm to compute the optimal 

value for this optimization problem. Then we show how to modify the algorithm 
so that it becomes a fully polynomial-time approximation scheme. (Recall that a 
fully polynomial-time approximation scheme has a running time that is polynomial 
in  as well as in the size of the input.) 

An exponential-time exact algorithm 

Suppose that you compute, for each subset   of  , the sum of the elements in   , 
and then you select, among the subsets whose sum does not exceed  , the one whose 
sum is closest to  . This algorithm returns the optimal solution, but it might take 
exponential time. To implement this algorithm, you can use an iterative procedure 
that, in iteration  , computes the sums of all subsets of       , using as a 
starting point the sums of all subsets of        . In doing so, you would 
realize that once a particular subset   has a sum exceeding  , there is no reason 
to maintain it, since no superset of   can be an optimal solution. Let’s see how to 
implement this strategy. 

The procedure EXACT-SUBSET-SUM takes an input set        , 
the size   , and a target value  . This procedure iteratively computes   , the 
list of sums of all subsets of      that do not exceed  , and then it returns 
the maximum value in   . 

If  is a list of positive integers and  is another positive integer, then let    
denote the list of integers derived from  by increasing each element of  by  . 
For example, if  , then    . This notation 
extends to sets, so that 

            

EXACT-SUBSET-SUM  
1    
2 for    to  
3    MERGE-LISTS           
4 remove from   every element that is greater than  
5 return the largest element in   

EXACT-SUBSET-SUM invokes an auxiliary procedure MERGE-LISTS   , 
which returns the sorted list that is the merge of its two sorted input lists  and   , 
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with duplicate values removed. Like the MERGE procedure we used in merge sort 
on page 36, MERGE-LISTS runs in    time. We omit the pseudocode 
for MERGE-LISTS. 

To see how EXACT-SUBSET-SUM works, let   denote the set of values ob- 
tained by selecting each (possibly empty) subset of        and summing 
its members. For example, if  , then 

    
    
    

Given the identity 

              (35.21) 

you can prove by induction on  (see Exercise 35.5-1) that the list   is a sorted list 
containing every element of   whose value is not more than  . Since the length 
of   can be as much as   , EXACT-SUBSET-SUM is an exponential-time algorithm 
in general, although it is a polynomial-time algorithm in the special cases in which  
is polynomial in   or all the numbers in  are bounded by a polynomial in  . 

A fully polynomial-time approximation scheme 

The key to devising a fully polynomial-time approximation scheme for the subset- 
sum problem is to <trim= each list   after it is created. Here’s the idea behind 
trimming: if two values in  are close to each other, then since the goal is just an 
approximate solution, there is no need to maintain both of them explicitly. More 
precisely, use a trimming parameter  such that . When trimming a 
list  by  , remove as many elements from  as possible, in such a way that if   
is the result of trimming , then for every element  that was removed from , 
some element  still in   approximates  . For  to approximate  , it must be no 
greater than  and also within a factor of    of  , so that 

 
   

    (35.22) 

You can think of such a  as <representing=  in the new list   . Each removed 
element  is represented by a remaining element  satisfying inequality (35.22). 
For example, suppose that    and 

   

Then trimming  results in 
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where the deleted value  is represented by , the deleted values  and  
are represented by , and the deleted value  is represented by . Because 
every element of the trimmed version of the list is also an element of the original 
version of the list, trimming can dramatically decrease the number of elements kept 
while keeping a close (and slightly smaller) representative value in the list for each 
deleted element. 

The procedure TRIM trims list         in  time, given  and 
the trimming parameter  . It assumes that  is sorted into monotonically increasing 
order. The output of the procedure is a trimmed, sorted list. The procedure scans 
the elements of  in monotonically increasing order. A number is appended onto 
the returned list   only if it is the ûrst element of  or if it cannot be represented 
by the most recent number placed into   . 

TRIM  
1 let  be the length of  
2      
3 last    
4 for    to  
5 if    last     //    last because  is sorted 
6 append   onto the end of   
7 last    
8 return   

Given the procedure TRIM, the procedure APPROX-SUBSET-SUM on the fol- 
lowing page implements the approximation scheme. This procedure takes as input 
a set         of  integers (in arbitrary order), the size   , the 
target integer  , and an approximation parameter  , where 

 (35.23) 

It returns a value   whose value is within a factor of    of the optimal solution. 
The APPROX-SUBSET-SUM procedure works as follows. Line 1 initializes the 

list   to be the list containing just the element . The for loop in lines 235 com- 
putes   as a sorted list containing a suitably trimmed version of the set   , with 
all elements larger than  removed. Since the procedure creates   from    , it 
must ensure that the repeated trimming doesn’t introduce too much compounded 
inaccuracy. That’s why instead of the trimming parameter being  in the call to 
TRIM, it has the smaller value . We’ll soon see that APPROX-SUBSET-SUM 
returns a correct approximation if one exists. 
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APPROX-SUBSET-SUM  
1    
2 for    to  
3    MERGE-LISTS           
4    TRIM    
5 remove from   every element that is greater than  
6 let   be the largest value in   
7 return   

As an example, suppose that APPROX-SUBSET-SUM is given 

  

with    and   . The trimming parameter  is     . 
The procedure computes the following values on the indicated lines: 

line 1:     

line 3:     
line 4:     
line 5:     

line 3:     
line 4:     
line 5:     

line 3:     
line 4:     
line 5:     

line 3:     
line 4:     
line 5:     

The procedure returns     as its answer, which is well within   % of 
the optimal answer       . In fact, it is within %. 

Theorem 35.7 
APPROX-SUBSET-SUM is a fully polynomial-time approximation scheme for the 
subset-sum problem. 
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Proof The operations of trimming   in line 4 and removing from   every ele- 
ment that is greater than  maintain the property that every element of   is also a 
member of   . Therefore, the value   returned in line 7 is indeed the sum of some 
subset of  , that is,      . Let      denote an optimal solution to the subset- 
sum problem, so that it is the greatest value in   that is less than or equal to  . 
Because line 5 ensures that     , we know that      . By inequality (35.1), 
we need to show that         . We must also show that the running time of 
this algorithm is polynomial in both  and the size of the input. 
As Exercise 35.5-2 asks you to show, for every element  in   that is at most  , 

there exists an element     such that 
 

    
    (35.24) 

Inequality (35.24) must hold for      , and therefore there exists an element 
    such that 

  

    
      

and thus 
  

 
 

 
  

 
 

  
 (35.25) 

Since there exists an element     fulûlling inequality (35.25), the inequality 
must hold for   , which is the largest value in   , which is to say 

  

  
 

 
  

 
 

  
 (35.26) 

Now we show that       . We do so by showing that     . 
First, inequality (35.23), , implies that 

     (35.27) 

Next, from equation (3.16) on page 66, we have lim         . 
Exercise 35.5-3 asks you to show that 

 
 

 
  

 
 

  
 (35.28) 

Therefore, the function     increases with  as it approaches its limit 
of   , and we have 

 
  

 
 

  
   

       (by inequality (3.15) on page 66) 
    (by inequality (35.27)) . (35.29) 
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Combining inequalities (35.26) and (35.29) completes the analysis of the approxi- 
mation ratio. 

To show that APPROX-SUBSET-SUM is a fully polynomial-time approximation 
scheme, we derive a bound on the length of   . After trimming, successive ele- 
ments  and   of   must have the relationship   . That is, they must 
differ by a factor of at least   . Each list, therefore, contains the value , 
possibly the value , and up to log    additional values. The number of 
elements in each list   is at most 

log      
ln  

ln    
  

 
   ln  

 
  (by inequality (3.23) on page 67) 

 
 ln  
 

  (by inequality (35.23), ) . 

This bound is polynomial in the size of the input4which is the number of bits lg  
needed to represent  plus the number of bits needed to represent the set  , which in 
turn is polynomial in 4and in  . Since the running time of APPROX-SUBSET- 
SUM is polynomial in the lengths of the lists   , we conclude that APPROX- 
SUBSET-SUM is a fully polynomial-time approximation scheme. 

Exercises 

35.5-1 
Prove equation (35.21). Then show that after executing line 4 of EXACT-SUBSET- 
SUM,   is a sorted list containing every element of   whose value is not more 
than  . 

35.5-2 
Using induction on  , prove inequality (35.24). 

35.5-3 
Prove inequality (35.28). 

35.5-4 
How can you modify the approximation scheme presented in this section to ûnd 
a good approximation to the smallest value not less than  that is a sum of some 
subset of the given input list? 

35.5-5 
Modify the APPROX-SUBSET-SUM procedure to also return the subset of  that 
sums to the value   . 
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Problems 

35-1 Bin packing 
You are given a set of  objects, where the size   of the  th object satisûes 

  . Your goal is to pack all the objects into the minimum number of unit- 
size bins. Each bin can hold any subset of the objects whose total size does not 
exceed . 
a. Prove that the problem of determining the minimum number of bins required is 

NP-hard. (Hint: Reduce from the subset-sum problem.) 
The ûrst-ût heuristic takes each object in turn and places it into the ûrst bin that 
can accommodate it, as follows. It maintains an ordered list of bins. Let  denote 
the number of bins in the list, where  increases over the course of the algorithm, 
and let      be the list of bins. Initially    and the list is empty. 
The algorithm takes each object  in turn and places it in the lowest-numbered 
bin that can still accommodate it. If no bin can accommodate object  , then  is 
incremented and a new bin   is opened, containing object  . Let   

  
    . 

b. Argue that the optimal number of bins required is at least  . 

c. Argue that the ûrst-ût heuristic leaves at most one bin at most half full. 

d. Prove that the number of bins used by the ûrst-ût heuristic never exceeds  . 

e. Prove an approximation ratio of  for the ûrst-ût heuristic. 

f. Give an efûcient implementation of the ûrst-ût heuristic, and analyze its running 
time. 

35-2 Approximating the size of a maximum clique 
Let    be an undirected graph. For any   , deûne   to be the undi- 
rected graph     , where   is the set of all ordered -tuples of vertices 
from  and   is deûned so that        is adjacent to        
if and only if for   , either vertex   is adjacent to   in , or else 

     . 
a. Prove that the size of the maximum clique in   is equal to the th power of 

the size of the maximum clique in . 

b. Argue that if there is an approximation algorithm that has a constant approxi- 
mation ratio for ûnding a maximum-size clique, then there is a polynomial-time 
approximation scheme for the problem. 
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35-3 Weighted set-covering problem 
Suppose that sets have weights in the set-covering problem, so that each set   in 
the family  has an associated weight   . The weight of a cover  is 

 
     . 

The goal is wish to determine a minimum-weight cover. (Section 35.3 handles the 
case in which     for all  .) 
Show how to generalize the greedy set-covering heuristic in a natural manner 

to provide an approximate solution for any instance of the weighted set-covering 
problem. Letting  be the maximum size of any set   , show that your heuristic 
has an approximation ratio of   

  
   . 

35-4 Maximum matching 
Recall that for an undirected graph , a matching is a set of edges such that no 
two edges in the set are incident on the same vertex. Section 25.1 showed how 
to ûnd a maximum matching in a bipartite graph, that is, a matching such that no 
other matching in  contains more edges. This problem examines matchings in 
undirected graphs that are not required to be bipartite. 

a. Show that a maximal matching need not be a maximum matching by exhibiting 
an undirected graph  and a maximal matching  in  that is not a maximum 
matching. (Hint: You can ûnd such a graph with only four vertices.) 

b. Consider a connected, undirected graph   . Give an -time 
greedy algorithm to ûnd a maximal matching in . 

This problem concentrates on a polynomial-time approximation algorithm for max- 
imum matching. Whereas the fastest known algorithm for maximum matching 
takes superlinear (but polynomial) time, the approximation algorithm here will run 
in linear time. You will show that the linear-time greedy algorithm for maximal 
matching in part (b) is a -approximation algorithm for maximum matching. 

c. Show that the size of a maximum matching in  is a lower bound on the size 
of any vertex cover for . 

d. Consider a maximal matching  in   . Let      some edge 
in  is incident on . What can you say about the subgraph of  induced by 
the vertices of  that are not in  ? 

e. Conclude from part (d) that    is the size of a vertex cover for . 

f. Using parts (c) and (e), prove that the greedy algorithm in part (b) is a -approx- 
imation algorithm for maximum matching. 



Problems for Chapter 35 1133 

35-5 Parallel machine scheduling 
In the parallel-machine-scheduling problem, the input has two parts:  jobs, 

      , where each job   has an associated nonnegative processing time 
of   , and  identical machines,       . Any job can run on any ma- 
chine. A schedule speciûes, for each job   , the machine on which it runs and the 
time period during which it runs. Each job   must run on some machine   for 

  consecutive time units, and during that time period no other job may run on   . 
Let   denote the completion time of job   , that is, the time at which job   
completes processing. Given a schedule, deûne  max  max         to 
be the makespan of the schedule. The goal is to ûnd a schedule whose makespan 
is minimum. 

For example, consider an input with two machines   and   , and four jobs 
  ,   ,   , and   with    ,    ,    , and    . Then one possible 

schedule runs, on machine   , job   followed by job   , and on machine   , 
job   followed by job   . For this schedule,    ,    ,    ,    , 
and  max  . An optimal schedule runs job   on machine   and jobs   ,   , 
and   on machine   . For this schedule, we have    ,    ,    , and 

   , and so  max  . 
Given the input to a parallel-machine-scheduling problem, let   

max denote the 
makespan of an optimal schedule. 
a. Show that the optimal makespan is at least as large as the greatest processing 

time, that is, 

  
max  max          

b. Show that the optimal makespan is at least as large as the average machine load, 
that is, 

  
max  

 
 

  

 

   

Consider the following greedy algorithm for parallel machine scheduling: when- 
ever a machine is idle, schedule any job that has not yet been scheduled. 
c. Write pseudocode to implement this greedy algorithm. What is the running 

time of your algorithm? 

d. For the schedule returned by the greedy algorithm, show that 

 max  
 
 

  

 

   max          

Conclude that this algorithm is a polynomial-time -approximation algorithm. 
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35-6 Approximating a maximum spanning tree 
Let    be an undirected graph with distinct edge weights  on each 
edge   . For each vertex    , denote by max  the maximum-weight 
edge incident on that vertex. Let   max       be the set of maximum- 
weight edges incident on each vertex, and let   be the maximum-weight spanning 
tree of , that is, the spanning tree of maximum total weight. For any subset of 
edges    , deûne     

 
  . 

a. Give an example of a graph with at least  vertices for which      . 

b. Give an example of a graph with at least  vertices for which      . 

c. Prove that      for any graph . 

d. Prove that        for any graph . 

e. Give an   -time algorithm to compute a -approximation to the maxi- 
mum spanning tree. 

35-7 An approximation algorithm for the 0-1 knapsack problem 
Recall the knapsack problem from Section 15.2. The input includes  items, where 
the  th item is worth   dollars and weighs   pounds. The input also includes the 
capacity of a knapsack, which is  pounds. Here, we add the further assumptions 
that each weight   is at most  and that the items are indexed in monotonically 
decreasing order of their values:         . 
In the 0-1 knapsack problem, the goal is to ûnd a subset of the items whose total 

weight is at most  and whose total value is maximum. The fractional knapsack 
problem is like the 0-1 knapsack problem, except that a fraction of each item may 
be put into the knapsack, rather than either all or none of each item. If a fraction   
of item  goes into the knapsack, where      , it contributes     to the 
weight of the knapsack and adds value     . The goal of this problem is to develop 
a polynomial-time -approximation algorithm for the 0-1 knapsack problem. 
In order to design a polynomial-time algorithm, let’s consider restricted in- 

stances of the 0-1 knapsack problem. Given an instance  of the knapsack problem, 
form restricted instances   , for   , by removing items    
and requiring the solution to include item  (all of item  in both the fractional and 
0-1 knapsack problems). No items are removed in instance   . For instance   , 
let   denote an optimal solution to the 0-1 problem and   denote an optimal 
solution to the fractional problem. 

a. Argue that an optimal solution to instance  of the 0-1 knapsack problem is one 
of       . 
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b. Prove that to ûnd an optimal solution   to the fractional problem for in- 
stance   , you can include item  and then use the greedy algorithm in which 
each step takes as much as possible of the unchosen item with the maximum 
value per pound     in the set     . 

c. Prove that there is always an optimal solution   to the fractional problem for 
instance   that includes at most one item fractionally. That is, for all items 
except possibly one, either all of the item or none of the item goes into the 
knapsack. 

d. Given an optimal solution   to the fractional problem for instance   , form 
solution   from   by deleting any fractional items from   . Let  denote 
the total value of items taken in a solution  . Prove that         

  . 

e. Give a polynomial-time algorithm that returns a maximum-value solution from 
the set       , and prove that your algorithm is a polynomial-time 
-approximation algorithm for the 0-1 knapsack problem. 

Chapter notes 

Although methods that do not necessarily compute exact solutions have been 
known for thousands of years (for example, methods to approximate the value 
of  ), the notion of an approximation algorithm is much more recent. Hochbaum 
[221] credits Garey, Graham, and Ullman [175] and Johnson [236] with formal- 
izing the concept of a polynomial-time approximation algorithm. The ûrst such 
algorithm is often credited to Graham [197]. 

Since this early work, thousands of approximation algorithms have been de- 
signed for a wide range of problems, and there is a wealth of literature on this ûeld. 
Texts by Ausiello et al. [29], Hochbaum [221], Vazirani [446], and Williamson and 
Shmoys [459] deal exclusively with approximation algorithms, as do surveys by 
Shmoys [409] and Klein and Young [256]. Several other texts, such as Garey and 
Johnson [176] and Papadimitriou and Steiglitz [353], have signiûcant coverage of 
approximation algorithms as well. Books edited by Lawler, Lenstra, Rinnooy Kan, 
and Shmoys [277] and by Gutin and Punnen [204] provide extensive treatments of 
approximation algorithms and heuristics for the traveling-salesperson problem. 

Papadimitriou and Steiglitz attribute the algorithm APPROX-VERTEX-COVER 
to F. Gavril and M. Yannakakis. The vertex-cover problem has been studied exten- 
sively (Hochbaum [221] lists  different approximation algorithms for this prob- 
lem), but all the approximation ratios are at least   . 
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The algorithm APPROX-TSP-TOUR appears in a paper by Rosenkrantz, Stearns, 
and Lewis [384]. Christoûdes improved on this algorithm and gave a -approxi- 
mation algorithm for the traveling-salesperson problem with the triangle inequality. 
Arora [23] and Mitchell [330] have shown that if the points lie in the euclidean 
plane, there is a polynomial-time approximation scheme. Theorem 35.3 is due to 
Sahni and Gonzalez [392]. 

The algorithm APPROX-SUBSET-SUM and its analysis are loosely modeled after 
related approximation algorithms for the knapsack and subset-sum problems by 
Ibarra and Kim [234]. 
Problem 35-7 is a combinatorial version of a more general result on approximat- 

ing knapsack-type integer programs by Bienstock and McClosky [55]. 
The randomized algorithm for MAX-3-CNF satisûability is implicit in the work 

of Johnson [236]. The weighted vertex-cover algorithm is by Hochbaum [220]. 
Section 35.4 only touches on the power of randomization and linear programming 
in the design of approximation algorithms. A combination of these two ideas yields 
a technique called <randomized rounding,= which formulates a problem as an in- 
teger linear program, solves the linear-programming relaxation, and interprets the 
variables in the solution as probabilities. These probabilities then help guide the 
solution of the original problem. This technique was ûrst used by Raghavan and 
Thompson [374], and it has had many subsequent uses. (See Motwani, Naor, and 
Raghavan [335] for a survey.) Several other notable ideas in the ûeld of approxi- 
mation algorithms include the primal-dual method (see Goemans and Williamson 
[184] for a survey), ûnding sparse cuts for use in divide-and-conquer algorithms 
[288], and the use of semideûnite programming [183]. 
As mentioned in the chapter notes for Chapter 34, results in probabilistically 

checkable proofs have led to lower bounds on the approximability of many prob- 
lems, including several in this chapter. In addition to the references there, the 
chapter by Arora and Lund [26] contains a good description of the relationship 
between probabilistically checkable proofs and the hardness of approximating var- 
ious problems. 


