((0+1)(0+1)) *: all binang strings of even length

1100-> [] -> no

Finite-State Machines

as a finite-state machine:

Deterministic Finite Automaton (DFA)

(Q, S, A, S) $Q: Set of states \Sigma0, 1, 2, 3, 4)$ SEQ: States State O $A \subseteq Q: Set of accepting \Sigma03$ $S: Q \times \Sigma \rightarrow Q: transition function$

Function takes and repuns a in (state, symbol) state

8:

2

3

TU

Ő

2

13

0

 $\delta(q, \alpha) = (q + i) \mod 5$

 $S(q, \alpha) = \begin{cases} q & \text{if } \alpha = 0 \\ (q+1) \mod G & \text{if } \alpha = 1 \end{cases}$

unat strings does this DFA accept?

unat do me states mean:

Y 2: saw II at some point 1: just a 1 (but haven't seen II yet)

O: just saw a O or E and haven't

Extended Transition Function $S^*: Q \times S^* \rightarrow Q$ $J_{stningover}$ aiphabed E $S^*(q, w) = \begin{cases} q_{s}(q, q), x \end{cases} if w = E \\ S^*(g(q, q), x) if w = ax \end{cases}$

for above DFA: $S^{*}(0, 1101010111000) = 2$

For machine M = (Q, S, A, S) $L(M) = \{w: S^*(S, w) \in A\}$ "The ranguage recognized by machine M

(someunat) automatic way to design DFAS.

q	δ[q, <mark>0</mark>]	$\delta[q,1]$	q	δ[q, <mark>0</mark>]
(False, ε)	(False, 0)	(False, 1)	$(TRUE, \varepsilon)$	(True, 0
(FALSE, 0)	(FALSE, 00)	(FALSE, 01)	(TRUE, 0)	(True, 00
(False, 1)	(FALSE, 10)	(True, 11)	(True, 1)	(True, 16
(False, 00)	(False, 00)	(False, 01)	(TRUE, 00)	(True, 00
(FALSE, 01)	(FALSE, 10)	(True, 11)	(True, 01)	(TRUE, 10
(FALSE, 10)	(FALSE, 00)	(False, 01)	(TRUE, 10)	(TRUE, 00
(False, 11)	(FALSE, 10)	(True, 11)	(True, 11)	(TRUE, 10
F,0 F,0 F,00 F,00 F,00 F,00 F,00 F,00 F	F,1 0 0 0 F,1 F,01			

binary #'s divisible by J 2X: 1010=0.2°+1.2+0.2²+1.2³=2+8 TTTT ex:00101110110 decimal valve mod [w[1.i] wsill value 1 ٤ n/a O Ð Ô 0 0 O 0 0 2 00 ტ Ø 00 3 ١ | 2 2 Ч 0010 ΰ, 5 5 00 (01 \bigcirc 131 6 001011 11 7 0010111 23 (' 00(0)110 46 q 3 8 0 . 93 00101101 q (00101100 ١ (0) 00/01/10/00 Ο 374 1)

value(w[1...i]) = 2(value(w[1...i-1]) + w[i])

(2(value (w [1...i-1]))) mod 5 w[i])

