$((0+1)(0+1))^{*}$: all binary strings

Finite-state Machines

A language we want to recognize $\left\{w \in\{0,1\}^{*}:|w|\right.$ is a multiple of 5$\}$

$$
\text { olloillio0010 }<\mathrm{N}
$$

keep track of the remainder:

$$
0,1,2,3,4
$$

lengin mod 5
as an algorithm:

$$
\text { rem }=0
$$

for $i=1$ to $|\omega|$: rem = $(r e m+1) \bmod 5$ return $($ rem $=0)$
as a finite-state machine:

Deterministic Finite Automaton (DFA) (Q, s, A, δ)
Q : set of states $\{0,1,2,3,4\}$
$s \in Q:$ start state
$A \subseteq Q:$ set of accepting $\{0\}$
$\delta: Q \times \Sigma \rightarrow Q:$ Transition function function takes and returns a in (state, symbol) and returns a

$$
\delta(q, a)=(q+1) \bmod 5
$$

binary
strings unere \# of 1 's is divisible by 6 .

$$
Q=\{0,1,2,3,4,5\}
$$

$$
\begin{aligned}
& S=0 \\
& A=\{0\}
\end{aligned}
$$

$$
\delta(q, a)=\left\{\begin{array}{cll}
q & \text { if } a=0 \\
(q+1) \bmod 6 & \text { if } & a=1
\end{array}\right.
$$

what strings does this DFA accept?

what do tue states mean?
Y 2 : saw 11 at some point
1: just a I (but haven't seen II yet)
O: just saw a 0 or \mathcal{E} and haven't sen 11 yet

Extended Transition Function

$$
\begin{aligned}
& \delta^{*}: Q \times \sum_{\substack{\lambda \\
\text { string over } \\
\text { alphabet }}}^{*} \rightarrow Q \\
& \delta^{*}(q, w)= \begin{cases}q \\
\delta^{*}(\delta(q, a), x) & \text { if } w=\varepsilon \\
w=a x\end{cases}
\end{aligned}
$$

for above DFA:

$$
\delta^{*}(0,1101010111000)=2
$$

For machine $M=(Q, S, A, \delta)$

$$
L(M)=\left\{w: \delta^{*}(s, w) \in A\right\}
$$

"the language recognized by machine μ "
(somewhat) automatic way to design DEA.
-wite au algorithm

- For loup trough the symbols
- constant \# variables
- each variable can only

Contains $11(w[1 . . n]):$ found \leftarrow FALSE for $i \leftarrow 1$ to $\bar{n}$$\rightarrow$ while
if $i=1$
last $2 \leftarrow w[1]$
else
last $2 \leftarrow w[i-1] \cdot w[i]$
if last 2 $=11$
found \leftarrow TRUE
return found

vars:

- last 2
- found
last 2:
fund:
return found
DFA recognizing strings w/ sulostring II

q	$\delta[q, 0]$	$\delta[q, 1])$		q	$\delta[q, 0]$
	(False, ε)	(False, 0)	(False, 1)		(True, ε)

binary $\#^{\prime} ' s$ divisible by 5

$$
\begin{aligned}
\text { ax: } 1010=0 \cdot 2^{0}+1 \cdot 2^{1}+0 \cdot 2^{2}+1 \cdot 2^{3} & =2+8 \\
\operatorname{T\uparrow T} & =10
\end{aligned}
$$

ex:00101110110

i	$w[1 . i]$	$w[i]$	decimal value	value mod
0	ε	w / a	0	5
$\rightarrow 1$	0	0	0	0
2	00	0	0	0
3	001	1	1	0
4	0010	0	2	1
5	00101	1	5	2
6	001011	1.	11	0
7	0010111	1.	23	1
8	00101110	0	46	3
9	00111101	1	0	1
10	0010111010	1	187	
11	0010110110	0	374	

$$
\operatorname{valve}(w[1 \cdots i])=2(\operatorname{valve}(w[1 \ldots i-1])+
$$

$$
(2(\text { valve }(w[1 \cdots i-1])+) \bmod S
$$

MultipleOf5($w[1 . . n]$):
rem $\leftarrow 0$
for $i \leftarrow 1$ to n $r e m \leftarrow(2 \cdot r e m+w[i]) \bmod 5$
if $\mathrm{rem}=0$
return True
else
return FALSE

