
Opportunistic Data Structures with Applications

Paolo Ferragina*
Universitl di Pisa

Abstract

In this paper we address the issue of compressing and
indexing data. We devise a data structure whose space oc-
cupancy is afunction of the entropy of the underlying data
set. We call the data structure opportunistic since its space
occupancy is decreased when the input is compressible and
this space reduction is achieved at no significant slowdown
in the query pe$ormance. More precisely, its space occu-
pancy is optimal in an information-content sense because
a text T [1 , U] is stored using O (H k (T)) + o(1) bitsper in-
put symbol in the worst case, where H k (T) is the kth or-
der empirical entropy of T (the bound holds for any fixed
k). Given an arbitrary string P[1, p] , the opportunistic data
structure allows to search for the occ occurrences of P in T
in O(p + occlog‘ U) time Cfor anyfixed E > 0). If data are
uncompressible we achieve the best space bound currently
known [12]; on compressible data our solution improves
the succinct suffix array of [I21 and the classical suffix tree
and suffix array data structures either in space or in query
time or both.

We also study our opportunistic data structure in a
dynamic setting and devise a variant achieving effective
search and update time bounds. Finally, we show how
to plug our opportunistic data structure into the Glimpse
tool [19]. The result is an indexing tool which achieves
sublinear space and sublinear query time complexity.

1 Introduction

Data structure is a central concept in algorithmics and
computer science in general. In the last decades it has been
investigated from different points of view and its basic ideas
enriched by new functionalities with the aim to cope with
the features of the peculiar setting of use: dynamic, persis-
tent, self-adjusting, implicit, fault-tolerant, just to cite a few.

*Dipattimento di Informatica, Universith di Pisa, 56100 Pisa, Italy. E-
mail: ferragin@di.unipi.it. Supported in part by Italian MURST project
“Algorithms for Large Data Sets: Science and Engineering” and by UN-

t Dipartimento di Scienze e Tecnologie Avanzate, Universith del
Piemonte Orientale, 15100 Alessandria, Italy and IMC-CNR, 56100 Pisa,
Italy. E-mail: manzini@mfn.unipmn.if. Supported in part by MURST 60%
funds.

ESCO p t UVO-ROSE 875.631.9.

Giovanni Manzinit
Universitl del Piemonte Orientale

Space reduction in data structural design is an attractive is-
sue, now more than ever before, because of the exponential
increase of electronic data nowadays available, and because
of its intimate relation with algorithmic performance im-
provements (see e.g. Knuth [16] and Bentley [5]). ‘This has
recently motivated an upsurging interest in the design of im-
plicit data structures for basic searching problems (see [23]
and references therein). The goal is to reduce as much as
possible the auxiliary information kept together with the in-
put data without introducing any significant slowdown in
the query performance. However, input data are represented
in their entirety thus taking no advantage of possible repet-
itiveness into them. The importance of those issues is well
known to programmers who typically use various tricks to
squeeze data as much as possible and still achieve good
query performance. Their approaches, though, boil down
to heuristics whose effectiveness is witnessed only by ex-
perimentation.

In this paper we address the issue of compressing and in-
dexing data by studying it in a theoretical framework. From
the best of our knowledge no other result is known in the
literature about the study of the interplay between com-
pression and indexing of data collections. The exploitation
of data compressibility have been already investigated only
with respect to its impact on algorithmic performance in the
context of on-line algorithms (e.g. caching and prefetch-
ing [15, 17]), string-matching algorithms (see e.g. [1,2,9]),
sorting and computational geometry algorithms [8].

The scenario. Most of the research in the design of in-
dexing data structures has been directed to devise solutions
which offer a good trade-off between query and update time
versus space usage. The two main approaches are word-
based indices andfull-text indices. The former achieve suc-
cinct space occupancy at the cost of being mainly limited
to index linguistic texts [27], the latter achieve versatility
and guaranteed performance at the cost of requiring large
space occupancy (see e.g. [10, 18, 211). Some progress on
full-text indices has been recently achieved [12,231, but an
asymptotical linear space seems unavoidable and this makes
word-based indices much more appealing when space oc-
cupancy is a primary concern. In this context compression
appears always as an attractive choice, if not mandatory.
Processing speed is currently improving at a faster rate than
disk speed. Since compression decreases the demand of

390
0-7695-0850-2/00 $10.00 0 2000 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

storage at the expenses of processing, it is becoming more
economical to store data in a compressed form rather than
uncompressed.

Starting from these promising considerations, many re-
searchers have recently concentrated on the compressed
matching problem, introduced in [l] , as the task of per-
forming string matching in a compressed text without de-
compressing it. A collection of algorithms is currently
known to solve efficiently (possibly optimally) this prob-
lem on text compressed by means of various schemes: e.g.
run-length [l], LZ77 [9], LZ78 [2], Huffman [24]. All of
these results, although asymptotically faster than the classi-
cal scan-based methods, they rely on the scan of the whole
compressed text and thus result still unacceptable for large
text collections.

Approaches to combine compression and indexing tech-
niques are nowadays receiving more and more attention, es-
pecially in the context of word-based indices, achieving ex-
perimental trade-offs between space occupancy and query
performance (see e.g. [4, 19, 271). An interesting idea to-
wards the direct compression of the index data structure
has been proposed in [13, 141 where the properties of the
Lempel-Ziv's compression scheme have been exploited to
reduce the number of index points, still supporting pattern
searches. As a result, the overall index requires provably
sublinear space but at the cost of either limiting the search
to q-grams [131 or worsening significantly the query perfor-
mance [141.

A natural question arises at this point: Do full-text in-
dices need a space occupancy linear in the (uncompressed)
text size in order to support effective search operations on
arbitrary patterns? It is a common belief [27] that some
space overhead must be paid to use the full-text indices, but
is this actually .a provable need?

Our Results. In this paper we answer the two questions
above by providing a novel data structure for indexing and
searching whose space occupancy is afunction of the en-
tropy of the underlying data set. The data structure is called
opportunistic in that, although no assumption on a partic-
ular distribution is made, it takes advantage of the com-
pressibility of the input data by decreasing the space oc-
cupancy at no signifcant slowdown in the query perfor-
mance.' The data structure is provably space optimal in
an information-content sense because it stores a text T[1, U]

using O (H k (T)) + o(1) bits per input symbol in the worst
case (for any fixed k >_ 0), where H k (T) is the kth order
empirical entropy. Hk expresses the maximum compres-
sion we can achieve using for each character a code which
depends only on the k characters preceding it. We point out
that in the case of an uncompressible string T, the space
occupancy is @ (U) bits which is actually optimal [12]; for

'The concept of opportunistic algorithm has been introduced in [9] to
characterize an algorithm which takes advantage of the compressibility of
the text to speed up its (scan based) search operations. In our paper, we
tum this concept into the one of opportunistic datu structure.

a compressible string, our opportunistic data structure is
the first to achieve sublinear space occupancy. Given an
arbitrary pattern P [l , p] , such an opportunistic data struc-
ture allows to search for the om occurrences of P in T in
O (p + occ log' U) time, for any fixed E > 0.

The novelty of our approach resides in the careful combi-
nation of the Burrows-Wheeler compression algorithm [7]
with the the suffix array data structure [181 to obtain a sort
of compressed suffix array. We indeed show how to aug-
ment the information kept by the Burrows-Wheeler algo-
rithm, in order to support effective random accesses to the
compressed data without the need of uncompressing all of
them at query time. We design two algorithms for operating
on our opportunistic data structure. The first algorithm is an
effective approach to search for an arbitrary pattern P [l , p]
in a compressed suffix array, taking O b) time in the worst
case (Section 3.1). The second algorithm exploits compres-
sion to speed up the retrieval of the actual positions of the
pattern occurrences, thus incurring only in a sublogarithmic
O(1og' U) time slowdown for any fixed E > 0 (Section 3.2).

In some sense, our result can be interpreted as a method
to compress the suffix array, and still support effective
searches for arbitrary patterns. In their seminal paper,
Manber and Myers [18] introduced the suffix array data
structure showing how to search for a pattern P [l , p] in
O(p + logu + occ) time in the worst case. The suffix
array uses O(u1ogu) bits of storage. Recently, Grossi
and Vitter [12] reduced the space usage of suffix arrays
to @ (U) bits at the cost of requiring O(1og' U) time to re-
trieve the i-th suffix. Hence, searching in this succinct suf-
fix array via the classical Manber-Myers' procedure takes
O(p + log"' u + occ log' U) time. Our solution therefore
improves the succinct suffix array of [121 both in space and
query time complexity. The authors of [121 introduce also
other hybrid indices which achieve better query-time com-
plexity but yet require n(u) bits of storage. As far as the
problem of counting the pattern occurrences is concerned,
our solution improves the classical suffix tree and suffix ar-
ray data structures, because they achieve R(p) time com-
plexity and occupy n(u logu) bits of storage.

In Section 4, we investigate the modifiability of our
opportunistic data structure by studying how to choreo-
graph its basic ideas with a dynamic setting. We show
that a dynamic text collection A of size U can be stored in
O(Hk(A)) + o (l) bit per input symbol (for any fixed k >_ 0
and not very short texts), support insert operations on indi-
vidual texts T[1, t] in O(t1o U) amortized time, delete op-
erations on T[1, t] in O(t log U) amortized time, and search
for a pattern P[1, p] in O(p log3 u + occ log U) time in the
worst case. We point out that even in the case of an uncom-
pressible text T , our space bounds are the best known ones
since the data structures in [12] do not support updates (the
dynamic case is left as open in their Section 4).

Finally, we investigate applications of our ideas to the
development of novel text retrieval systems based on the

5

391

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

concept of block addressing (first introduced in the Glimpse
tool [191). The notable feature of block addressing is that
it can achieve both sublinear space overhead and sublinear
query time, whereas inverted indices achieve only the sec-
ond goal [4]. Unfortunately, up to now all the known block
addressing indices [4, 191 achieve time and space sublinear-
ity only under some restrictive conditions on the block size.
We show how to use our opportunistic data structure to de-
vise a novel block addressing scheme, called CGlimpse
(standing for Compressed Glimpse), which always achieves
time and space sublinearity.

2 Background

Let T[1, U] be a text drawn from a constant-size alphabet
E. A central concept in our discussion is the su& array
data structure [18]. The suffix array A built on T[1, U] is an
array containing the lexicographically ordered sequence of
the suffixes of T , represented via pointers to their starting
positions (i.e., integers). For instance, if T = ababc then
A = [l , 3,2,4,5]. Clearly A requires U log, U bits, actually
a lot when indexing large text collections. It is a long stand-
ing belief that suffix arrays are uncompressible because of
the “apparently random” permutation of the suffix pointers.
Recent results in the data compression field have opened the
door to revolutionary ways to compress suffix arrays and are
basic tools of our data structure.

In [7], Burrows and Wheeler propose a transformation
(BWT from now on) consisting of a reversible permutation
of the text characters which gives a new string that is “eas-
ier to compress”. The BWT tends to group together char-
acters which occur adjacent to similar text substrings. This
nice property is exploited by locally-adaptive compression
algorithms, such as move-to-front coding [6], in combina-
tion with statistical (i.e. Huffman or Arithmetic coders) or
structured coding models. The BWT-based compressors are
among the best compressors currently available since they
achieve a very good compression ratio using relatively small
time and space.

The reversible BWT. We distinguish between a for-
ward transformation, which produces the string to be com-
pressed, and a backward transformation which gives back
the original text from the transformed one. The forward
BWT consists of three basic steps: (1) Append to the end
of T a special character # smaller than any other text char-
acter; (2) form a conceptual matrix M whose rows are the
cyclic shifts of the string T# sorted in lexicographic order;
(3) construct the transformed text L by taking the last col-
umn of M . Notice that every column of M is a permuta-
tion of the last column L, and in particular the first column
of M , call it F , is obtained by lexicographically sorting the
characters in L.

There is a strong relation between the matrix M and the
suffix array A of the string T . When sorting the rows of
the matrix M we are essentially sorting the suffixes of T .

Consequently, entry A[i] points to the suffix of T occupying
(a prefix of) the ith row of M . The cost of performing the
forward BWT is given by the ‘Cost of constructing the suffix
array A, and this requires O(U) time [21].

The cyclic shift of the rows of M is crucial to define
the backward BWT, which is based on two easy to prove
observations [7]:

a. Given the ith row of M , its last character L[i] precedes
its first character F[i] in the original text T , namely

b. Let L[i] = c and let ri be the number of occurrences
of c in the prefix L[1, i] . Let M [j] be the ri-th row of
M starting with c. The character in the first column F
corresponding to L[i] is located at F[j] . We call this
LF-mapping (Last-to-First mapping) and set LF[i] =

T = . * * L[i]F[i] . * *.

j.

We are now ready to describe the backward BWT:

1. Compute the array C [1 . . . lEl] storing in C[c] the
number of occurrences in T of the characters
{#, 1 , . . . , c - 1). Notice that C[c] + 1 is the posi-
tion of the first occurrence of c in F (if any).

2. Define the LF-mapping L F [l . . . U + 11 as follows:
LF[i] = C[L[i]] + r i , where r i equals the number of
occurrences of the character L[i] in the prefix L[l , i]
(see observation (b) above).

3. Reconstruct T backward as follows: set s = 1 and
T[u] = L[1] (because M[1] = #T); then, for each
i = U - 1 , . . . , l do s = LF[s] and T[i] = L[s].

In [26] it is shown how to derive the suffix a r r ~ y A from
L in linear time; however, in the context of pattern search-
ing, the algorithm in [26] is no better than the known scan-
based opportunistic algorithms (such as [9]). Nonetheless,
the implicit presence of the suffix array A into L suggests to
take full advantage of the structure of A for fast searching,
and of the high compressibility of L for space reduction.
This is actually the ultimate hope of any indexer: succinct
and fast! In the next section, we show that this result is
achievable provided that a sublogarithmic slowdown (wrt
the suffix array) is introduced in the cost of listing the pat-
tern occurrences.

Let Tbw = bwt(T) denote the last column L, output of
the BWT. Our indexing data structure consists of a com-
pressed version of Tb” together with some other auxiliary
array-based data structures that support random access to
Tbw. We compress TbW in three steps (see also [20]):

1. Use a move-to-front coder, briefly m t f [6], to encode
a character c via the count of distinct characters seen
since its previous occurrence. The structural proper-
ties of TbW, mentioned above, imply that the string
Tmtf = mtf (T”) will be dominated by low numbers.

392

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

2. Encode each run of zeroes in Tmtf using run length
encoding (rle). More precisely, replace the sequence
0" with the number (m + 1) written in binary, least
significant bit first, discarding the most significant bit.
For this encoding we use two new symbols 0 and 1 so
that the resulting string Tr' = rle(Tmtf) is over the
alphabet {0,1,1,2,. . ., 1x1 - 1).

3. Compress T" by means of a variable-length prefix
code, called Pc, which encodes the symbols 0 and 1
using two bits (10 for 0, 11 for l), and the symbol i us-
ing a variable-length prefix code of 1 + 2 [log(i + 1) J
bits, the first one being a zero.

The resulting algorithm BWRLX = bwt + m t f + r l e +
PC is sufficiently simple so that in the rest of the paper we
can concentrate on the searching algorithm without being
distracted by the details of the compression. Despite of the
simplicity of BWRLX, using the results in [2012 it is possible
to show that (proof in the full paper), for any k 3 0 and for
any T there exists a constant gk such that

where Hk is the kth order empirical entropy. Hk expresses
the maximum compression we can achieve using for each
character a code which depends only on the k characters
preceding it.

3 Searching in BWT-compressed text

Let T[1, U] denote an arbitrary text over the alphabet E,
and let 2 = BWRLX(T). In this section we describe an algo-
rithm which, given a pattern P[1, p] , reports all occurrences
of P in the uncompressed text T by looking only at 2 and
without uncompressing all of it. Our algorithm makes use
of the relation between the suffix array A and the matrix
M. Recall that the suffix array A posses two nice structural
properties which are usually exploited to support fast pat-
tern searches: (i) all the suffixes of the text T prefixed by
a pattern P occupy a contiguous portion (subarray) of A;
(ii) that subarray has starting position s p and ending posi-
tion ep, where sp is actually the lexicographic position of
the string P among the ordered sequence of text suffixes.

3.1 Step I: Counting the occurrences

We now describe an algorithm, called BW-Count, which
identifies the positions s p and ep by accessing only the com-
pressed string 2 and some auxiliary array-based data struc-
tures.

BW-Count consists of p phases each one preserving the
following invariant: At the i-th phase, the parameter s p

*The algorithm BWRLX corresponds to the procedure A' described
in [20]

Algorithm BW-Count(P[l, p])

1. c = Pb], i = p;

2. sp = C[c] + 1, ep = C[c + 11;
3. while ((s p 5 ep) and (i 2 2)) do
4.

5.
6.
7. i = i - l ;

8. if (ep < sp) then return "pattern not found"

c = P[i - 11;
sp = C[C] + Occ(c, 1, s p - 1) + 1;

ep = C[c] + OCC(C, 1, ep);

else return "found (ep - sp + 1) occurrences"

Figure 1. Algorithm for counting the number
of occurrences of P[l,p] In T[l,u].

points to thefirst row of M prejixed by P [i , p] and the pa-
rameter ep points to the last row of M prefied by P[i,p].
The pseudo-code is given in Fig. 1. In the first phase (i.e.
i = p), s p and ep are determined via the array C defined
in Section 2 (Step 2). The values sp and ep are updated
at Steps 5 and 6 using the subroutine Occ(c, 1, k) which
reports the number of occurrences of c in TbW[l, k]. Note
that at Steps 5 and 6 we are computing the LF-mapping
for, respectively, the first and the last occurrence (if any) of
P[i - 11 in Tbw[sp, ep]. If at the generic ith phase we have
ep < sp we can conclude that P[i ,p] does not occur in T
and hence P does not too. After the final phase, sp and ep
will delimit the portion of M (and thus of the suffix array
A) containing all the text suffixes prefixed by P. The in-
teger (ep - sp + 1) will therefore account for the number
of occurrences of P in T. The following lemma proves the
correctness of BW-Count assuming Occ works as claimed
(proof in the full paper).

Lemma 1 For i = p , p - 1, . . . ,2, if P[i - 1, p] occurs in T
then Step 5 (resp. Step 6) of BW-Count correctly updates
the value of s p (resp. ep) thus pointing to the first (resp.

I last) row prejixed by P[i - l,p].

The running time of BW-Count depends on the cost of
the procedure OCC. We now describe an algorithm for com-
puting OcC(c, 1, k) in O(1) time, on a RAM with word size
O(logu) bits.

We logically partition the transformed string Tbw into
substrings of e characters each (called buckets), and denote
them by BTi = Tbw[(i - l)! + l,ie], fo r i = 1 , . . . ,./e.
This partition naturally induces a partition of Tmtf into
u/e buckets B T y t f , . . . , BTU";:f of size e too. We as-
sume that each run of zeroes in Tmtf is entirely con-
tained in a single bucket and we describe our algorithm

393

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

for computing OCC(C, 1 , k) under this simplifying assump-
tion. The general case in which a sequence of zeroes may
span several buckets is similar and thus its discussion is de-
ferred to the full paper. Under our assumption, the buck-
ets BTYtf's induce a partition of the compressed file Z
into u/e compressed buckets BZ1,. . . , BZ,/e, defined as

Let BTi denote the bucket containing the charac-
ter Tbw[k] (namely i = [k / e l) . The computation of
OCC(C, 1 , k) is based on a hierarchical decomposition of
TbW[l ,k] in three substrings as follows: (i) the longest
prefix of Tbw[l ,k] having length a multiple of C2 (i.e.
BT1 . - . BTep, where i* = IF]), (ii) the longest pre-
fix of the remaining suffix having length a multiple of e (i.e.
BTe(*+I e BTi-l), and finally (iii) the remaining suffix
of Tbw[l , k] which is indeed a prefix of the bucket BTi.
We compute Occ(c, 1 , k) by summing the number of oc-
currences of c in each of these substrings. This can be done
in 0(1) time and sublinear space using the following auxil-
iary data structures.
For the calculations on the substring of point (i):

BZi = PC(rle(BTytf)).

0 Fori = 1 , . . . , u/12, the array NOi[l , lCl] stores in the
entry NOi[c] the number of occurrences of the charac-
ter c in BT1 . . BTu.

0 The array W[1, u/12] stores in the entry W[i] the value
I BZj 1 equals to the sum of the sizes of the com-

pressed buckets BZ1,. . . , BZit.

For the calculations on the substring of point (ii):

0 Fori = 1 , . . . , U / [, the array NOI[l, lCl] stores in the
entry NOi[c] the number of occurrences of the char-
acter c in the string BTi.+l . . . BTi-1 (this concate-
nated string has length less than 12).

0 The array W ' [l , u / q stores in the entry W'[i] the
value lBZj I equals to the overall size of the
compressed buckets BZi++l, . . . , BZi-1 (the value is
bounded above by O(e2)).

For the calculations on the (compressed) buckets:

0 The array MTF[l , u / 4 stores in the entry MTF[i] a
picture of the state of the MTF list at the beginning of
the encoding of BTi. Each entry takes IC(log 1x1 bits
(i.e. 0(1) bits).

0 The table S stores in the entry S[c, j, b, m] the num-
ber of occurrences of c among the first j characters
of the compressed string b, assuming that m is the
picture of the MTF list used to produce b. Thus, en-
try S[c, j, BZi, MTF[i]] stores the number of occur-
rences of c in B T i [l , j] . Table S has 0(t2e') entries
each one occupying O(1og t) bits, where e' is the max-
imum length of a compressed bucket.

The computation of OCC(C, 1 , k) therefore proceeds as
follows. First, the bucket BTi containing the character c =

Tbw[k] is determined via i = [k/.!l, together with the posi-
tion j = k- (i - l)l of this character in BTi and the param-
eter i* = [(k - l)/12]. Then the number of occurrences
of c in the prefix BT1 . . BTei. (point (i)) is determined
via NOi.[c], and the number of occurrences of c in the
substring BTti., . . . , BTi-1 (point (ii)) is determined via
NO:[c]. Finally, the compressed bucket BZi is rletrieved
from Z (notice that W[i*]+W'[i]+l is its startingposition),
and the number of occurrences of c within BTi [l , j] are ac-
counted accessing S[c, j, BZi, MTF[i]] in 0(1) time. The
sum of these three quantities gives Occ(c, 1 , k).

By construction any compressed bucket BZi has size at
most e' = (1 + 2 l1ogCJ)e bits. We choose L = @(logu)
so that e l = clogu with c < 1. Under this assumption,
every step of OCC consists of arithmetic operations or table
lookup operations involving O(1og u)-bit operands. Conse-
quently every call to OCC takes O(1) time on a RAM. As far
as the space occupancy is concerned, the arrays NO and W
take O((u/C2) logu) = O(u/logu) bits. The arrays NO'
and W' take O((U / [) log e) = O((U / log U) log log U) bits.
The array MTF takes O(u/l?) = O(u/ logu) bits. Table
S consists of O(t2") loge-bit entries and thus it occupies
0(2e'.tlogC) = O(zf1oguloglogu) bits, where c < 1.
We conclude that the auxiliary data structures used by OCC
occupy O((U/ log U) log log U) bits (in addition to the com-
pressed file Z) .

Theorem 1 Let Z denote the output of the allgorithm
BWRLX on input T[1, U] . The number of occurrences of a
pattern P[l ,p] in T[1, U] can be computed in O(p) time on
a RAM. The space occupancy is 121 + 0 (& loglogu
bits in the worst case. I

1
3.2 Step 11: Locating the occurrences

We now consider the problem of determining the exact
position in the text T of all the occurrences of the pattern
P [l , p] . This means that fors = sp, sp+ 1 , . . . , ep, we want
to find the text position pos(s) of the suffix which prefixes
the sth row M [SI. We propose two approaches: the first one
is simple and slow, the second one is faster and relies on the
very special properties of the the string TbW.

In the first algorithm we logically mark the rows of M
which correspond to text positions having the fomi 1 + iq,
for q = @(log2 U) and i = 0 , 1 , . . . ,u/q. We store with
these marked rows the starting positions of the correspond-
ing text suffixes explicitly. This preprocessing is done at
compression time. At query time we find pos(s) as fol-
lows. Ifs is a marked row, then there is nothing to be done
and its position is directly available. Otherwise, we use the
LF-mapping to find the row s' corresponding to the suffix
T[pos(s) - l , ~] . We iterate this procedure w times until
s' points to a marked row; at that point pos(s') is available
and we set pos(s) = pos(s') + w. The crucial point of

394

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

the algorithm is the logical marking of the rows of M cor-
responding to the text suffixes starting at positions 1 + iq,
i = 0,. . . ,u/q. Our solution consists in storing the row
numbers in a two-level bucketing scheme. We partition the
rows of M into buckets of size @(log2 U) each. For each
bucket, we take all the marked rows lying into it, and store
them into a Packet B-tree [3] using as a key their distance
from the be inning of the bucket. Since a bucket contains at
most O(1og U) keys, each O(1og log u) bits long, member-
ship queries take O(1) 'time on a RAM. The overall space
required for the logical marking is O((u/v) loglogu) bits.
In addition, for each marked row we also keep the starting
position of the corresponding text suffix (i.e. pos()) , which
requires additional O(1og U) bits per marked row. Conse-
quently, the overall space occupancy is O((u/q) log U) =
O(u/ logu) bits. For what concerns the time complexity,
our algorithm computes pos(s) in at most q = @(log2 U)

steps, each taking constant time. Hence the occ occurrences
of a pattem P in T can be retrieved in O(occ log2 U) time,
with a space overhead of O(u/ log U) bits. Combining the
results of this section with (1) we have:

Theorem 2 A text T[1, U] can be preprocessed in O(u)
time so that all the occ occurrences of a pattem P[l , p] in
T can be listed in O(p + occlog2 U) time on a RAM. The
space occupancy is bounded by 5Hk(T) + O(v) bits
per input symbol in the worst case, for anyjixed k 3 0. I

We now refine the above algorithm in order to compute
pos(s) in O(1og' U) time for any fixed E > 0. We still use
the idea of marking some of the rows in M, however we in-
troduce some shortcuts which allow to move in T by more
that one character at a time, thus reducing the number of
steps required to reach a marked position. The key ingredi-
ent of our new approach is a procedure for computing the
LF-mapping over a string !#? drawn from an alphabet A of
non-constant size (proof and details in the full paper):

Lemma2 Given a string !#?[l,v] over an arbitrary al-
phabet A, we can compute the LF-mapping over Fbw in
O(1og' w) time using O(v(1 + H k (! # ?)) + IAlk+' (log 1111 +

I

9

log U)) bits of storage, for any given E > 0.

we use Lemma 2 to computepos(s) in O(log(1/2)+2'
time; this is an intermediate result that will be then refined
to achieve the final O(1og' U) time bound.

At compression time we logically mark the rows of M
which correspond to text positions of the form 1 + iy for
i = 0,. . . , u/y and y = @(log(1/2)+' U) . Then, we con-
sider the string TO obtained by grouping the characters of T
into blocks of size y. Clearly TO has length u / y and its char-
acters belong to the alphabet Cr. Let M O denote the cyclic-
shift matrix associated to TO; notice that M O consists of the
marked rows of M. Now we mark the rows of M O corre-
sponding to the suffixes of TO starting at the positions 1 +iq,
for i = 0 , . . . , IToI/q and 77 = U) . For these

rows we explicitly keep the starting position of the corre-
sponding text suffixes. To compute pos(s) we first compute
the LF-mapping in M until we reach a marked row s'. Then
we compute pos(s') by finding its corresponding row in
M O and computing the LF-mapping in M O (via Lemma 2)
until we reach a marked row s" in M O (for which pos(s'')
is explicitly available by construction). The marking of T
and the counting of the number of marked rows in M that
precede a given marked row s' (this is required in order to
determine the position in M O of M [s']) can be done in con-
stant time and O(F log log U) bits of storage using again a
Packed B-tree and a two level bucketing scheme as before.
In addition, for @(ITol/q) rows of M O we keep explic-
itly their ositions in TO which take @((lTol/q) logu) =
@ (U / log ' U) bits of storage. The space occupancy of the
procedure for computing the LF-mapping in Ttw is given
by Lemma 2. Since Hk(T0) 5 y H k y (T) , a simple alge-
braic calculation yields that the overall space occupancy is
0 (Hk (T) + &) bits per input symbol, for any fixed k.
The time complexity of the algorithm is O(y) (for finding a
marked row in M) plus O(q log' U) (for finding a marked
row in MO), thus O(log(1/2)+2' U) time overall.

The final time bound of O(1og' U) for the computation
of pos(s) can be achieved by iterating the approach above
as follows. The main idea is to take yo = O(log'u),
and apply the procedure for computing the LF-mapping in
TO for O(1og'u) steps, thus identifying a row s1 of the
matrix M O such that pos(s1) has the form 1 + iyl with
y1 = @(log2'u). Next, we define the string TI obtained
by grouping the characters of T into blocks of size y1 and
we consider the corresponding matrix M I . By construction
s1 corresponds to a row in M I and we can iterate the above
scheme. At the j th step we operate on the matrix M j - 1 un-
til we find a row sj such that pos(s j) has the form 1 + iyj
where yj = @(log(j+')' U) . This continues until j reaches
the value [l / c l . At that point the matrix M j consists of
@ (U / U) rows, where 6 = [l/El E - 1 . Since we
can always choose E so that 6 > 0, we can store explic-
itly the starting positions pas() of the marked text suffixes
in M j using sublinear space, i.e. o(u) bits. Summing up,
the algorithm com utespos(s) in [l / ~] = @ (1) iterations,
each taking @(log U) time. Since E is an arbitrary positive
constant, it is clear that we can rewrite the previous time
bound as @(+) = @(log' U) . The space occupancy is
dominated by the one required for the marking of M .

B

z

Theorem 3 A text T[1, U] can be indexed so that all the
occ occurrences of a pattern P [l , p] in T can be listed in
O(p + occ log' U) time on a RAM. The space occupancy
is o (Hk (T) + ':$r) bits per input symbol in the worst

I case, for any@ed k 2 0.

395

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

4 Dynamizing our approach

Let A be a dynamic collection of texts {TI , . . . , Tm}
having arbitrary lengths and total size U. Collection A may
shrink or grow over the time due to insert and delete oper-
ations which allow to add or remove from A an individual
text string. Our aim is to store A in succinct space, perform
the update operations efficiently, and support fast searches
for the occurrences of an arbitrary pattern P [l , p] into A's
texts. This problem can be solved in optimal time complex-
ity and O(u1ogu) bits of storage [lo, 211. In the present
section we aim at dynamizing our compressed index in or-
der to keep A in a reduced space and be able to efficiently
support update and search operations. Our result exploits
an elegant technique proposed in [22, 251, here adapted to
manage items of variable lengths (i.e. texts).

In the following we bound the space occupancy of our
data structure in terms of the entropy of the concatenation of
A's texts. A better overall space reduction might be possi-
bly achieved by compressing separately the texts Ti's. How-
ever, if the texts Ti's have similar statistics, the entropy of
the concatenated string is a reasonable lower bound to the
compressibility of the collection. Furthermore, in the prob-
abilistic setting where we assume that every text is gener-
ated by the same probabilistic source, the entropy of the
concatenated string coincides with the entropy of the sin-
gle texts and therefore provides a tight lower bound to the
compressibility of the collection.

In the following we focus on the situation in which the
length p of the searched pattern is O(&) because for the
other range of p's values, the search operation can be im-
plemented in a brute-force way by first decompressing the
text collection and by then searching for P into it using a
scan-based string matching algorithm in O(p log3 U + ow)
time. We partition the texts ~ i ' s into q = @(log2 U) col-
lections C', . . . , Cq, each containing texts of overall length
O(+). This is always possible, independently of the
lengths of the text strings in A, since the upper bound on the
length of the searchable patterns allows us to split very long
texts (i.e. texts of lengths Q(+)) into 2 log2 U pieces
overlapping for O(&) characters. This covering of a
single long text with many shorter ones still allows us to
find the occurrences of the searched patterns.

Every collection C h is then partitioned into a series of
subsets Sf defined as follows: Sf contains some texts
of C h having overall length in the range [2i, 2i+'), where
i = O(1ogu). Each set Sf is simultaneously indexed and
compressed using our opportunistic data structure. Search-
ing for an arbitrary pattern P[1, p] in A, with p = O(+)
can be performed by searching for P in all the O(10g3 U)
subsets Sf via the compressed index built on each of them.
This takes ~ (p log3 U + occ log' U) time overall.

Inserting a new text T[1, t] into A consists of insert-
ing T into one of the sets C h , the most empty one. Then,

the subset Sf is selected, where i = LlogtJ, andl T is in-
serted into it using the following approach. If Sf is empty
then the compressed index is built for T and associated to
this subset, thus taking O(t) time. Otherwise the new set
Sf U { T } is formed and inserted in Sf+l. If the latiter subset
is not empty then the insertion process is propagated until an
empty subset Sf+j is found. At this point, the compressed
index is built over the set Sf U . . . U S&j-l U {T} , by
concatenating all the texts contained in this set to form a
unique string, texts are separated by a special symbol (as
usual). By noticing that these texts have overall length
0(2'+j), we conclude that this propagation process has a
complexity proportional to the overall length of the moved
texts. Although each single insertion may be very costly, we
can amortize this cost by charging O(1og U) credits per text
character (since i,j = O(logu)), thus obtaining an overall
amortized cost of O(t1ogu) to insert T[l , t] in A. Some
care must be taken to evaluate the space occupied during
the reconstruction of the set Sf. In fact, the coristruction
of our compressed index over the set S! requires the use
of the suffix tree data structure (to compute the BWT) and
thus O(2i log 2') bits of auxiliary storage. This could be too
much, but we ensured that every collection C h contains texts
having overall length O(&). So that at most O(e)
bits suffices to support any reconstruction process.

We now show how to support text deletions from A. The
main problem here is that from one side we would like to
physically cancel the texts in order to avoid the listing of
ghost occurrences belonging to texts no longer in A; but
from the other side a physical deletion would be too much
time-consuming to be performed on-the-fly. Amortization
can still be used but much care must be taken when answer-
ing a query to properly deal with texts which have been log-
ically deleted from the Sf's. For the sake of presentation
let Tbw be the BWT of the texts stored in some set Sf. We
store in a balanced search tree the set Zf of interval posi-
tions in TbW occupied by deleted text suffixes. If a pattern
occurrence is found in Tbw using our compressed index,
we can check in O(1og U) time if it is a real or a ghost oc-
currence. Every time a text T[1, t] must be deleted from
Sf, we search for all of its suffixes in Sf and then update
accordingly Zf in O(t log U) time. The additional space re-
quired to store the balanced search tree is O(lZf I log U) =
O(e) bits, where we are assuming to physically delete
the texts from Sf as soon as a fraction of O(Fgk) suf-
fixes is logically marked. Hence, each set Sf may undergo
O(log2 U) reconstructions before it shrinks enough to move
back to the previous set Sf'l. Consequently the amortized
cost of delete is O(t log U + t log2 U) = O(t log2 U), where
the first term denotes the cost of I f ' s update and the second
term accounts for the credits to be left in order to pay for
the physical deletions.

Finally, to identify a text to be deleted we append to ev-
ery text in A an identifier of O(1ogu) bits, and we keep

396

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

track of the subset Sf containing a given text via a table.
This introduces an overhead of O(m1ogu) bits which is
.(U) if we reasonably assume that the texts are not too short,
i.e. w(1ogu) bits each.

Theorem4 Let A be a dynamic collection of texts
{TI, T2,. , . , T,) having total length U . All the occ occur-
rences of a pattern P[l,p] in the texts of A can be listed
in O(p log3 U + occ log U) time in the worst case. Opera-
tion insert adds a new text T[1, t] to A in O(t log U) amor-
tized time. Operation delete removes a text T[l,t] from
A in O(t log2 U) amortized time. The space occupancy is
0 (HI , (A) + m F) + o(1) bits per input symbol in the

I worst case for any f i ed k 2 0.

5 A simple application

Glimpse [191 is an effective tool to index linguistic texts.
From a high level point of view, it is a hybrid between in-
verted files and scan-based approaches with no index. It
relies on the observation that there is no need to index every
word with an exact location (as it occurs in inverted files);
but only pointers to an area where the word occurs (called
a block) should be maintained. Glimpse assumes that the
text T[1, U] is logically partitioned into T blocks of size b
each, and thus its index consists of two parts: a vocabulary
V containing all the distinct words of the text; and for each
word w E V, a list L(w) of blocks where the word w occurs.
This blocking scheme induces two space savings: pointers
to word occurrences are shorter, and the occurrences of the
same word in a single block are represented only once. Typ-
ically the index is very compact: 2-4% of the original text
size [19].

Given this index structure, the search scheme proceeds in
two steps: first the queried word w is searched in the vocab-
ulary V , then all candidate blocks of L(w) are sequentially
examined to find all the w’s occurrences. Complex queries
(e.g. approximate or regular expression searches) can be
supported by using Agrep [28] both in the vocabulary and
in the block searches. Clearly, the search is efficient if the
vocabulary is small, if the query is enough selective, and if
the block size is not too large. The first two requirements
are usually met in practice, so that the main constraint to the
effective use of Glimpse remains the strict relation between
block-pointer sizes and text sizes. Theoretical and exper-
imental analysis of such block-addressing scheme [4, 191
have shown that the Glimpse approach is effective only for
medium sized texts (roughly up to 200Mb). Recent papers
tried to overcome this limitation by compressing each text
block individually and then searching it via proper oppor-
tunistic string-matching algorithms [19, 241. The experi-
mental results showed an improvement of about 30-50%
in the final performance, thus implicitly proving that the
second searching step dominates Glimpse’s query perfor-
mance.

Our opportunistic index naturally fits in this block-
addressing framework and allows us to extend its applica-
bility to larger text databases. The new approach, named
Compressed Glimpse (shortly CG1 impse), consists in us-
ing our opportunistic data structure to index each text block
individually; this way, each candidate block is not fully
scanned at query time but its index is employed to fasten
the detection of the pattern occurrences. In some sense
CGlimpse is a compromise between a full-text index (like
a suffix array) and a word-based index (like an inverted list)
over a compressed text.

A theoretical investigation of the performance of
CGlimpse is feasible using a model generally accepted
in Information Retrieval [4]. It assumes the Heaps law to
model the vocabulary size (i.e. V = 0 (d) with 0 < p <
l), the generalized Zipf’s law to model the frequency of
words in the text collection (i.e. the largest ith frequency of
a word is u/(ieHF’) , where H f) is a normalization term
and t9 is a parameter larger than l), and assumes that 0(uP)
is the number of matches for a given word with IC 2 1 errors
(where p < 1). Under these hypothesis we can show that
CG1 impse achieves both sublinear space overhead and
sublinear query time independent of the block size (proof
in the full paper). Conversely, inverted indices achieve only
the second goal [U], and classical Glimpse achieves both
goals but under some restrictive conditions on the block
size [4].

6 Conclusions

Some issues remain still to be investigated in various
models of computation. In external memory, it would be
interesting to devise a compressed index which takes ad-
vantage of the blocked access to the disk and thus achieves
O(occ/B) I/Os for locating the pattern occurrences, where
B is the disk-page size. In the RAM, it would be interest-
ing to avoid the o(1og U) overhead incurred in the listing of
the pattern occurrences. In the full paper we will show how
to use known techniques (see e.g. [111) for designing hy-
brid indices which achieve O(occ) retrieval time cost under
restrictive conditions either on the pattern length or on the
number of pattern occurrences. Guaranteeing the ~ (O C C)

retrieval cost in the general case is an open problem also in
the uncompressed setting [121.

References

[l] A. Amir and G. Benson. Efficient two-dimensional com-
pressed matching. Proceedings of IEEE Data Compression
Conference, pages 279-288, 1992.

[2] A. Amir, G. Benson, and M. Farach. Let sleeping files lie:
Pattern matching in Z-compressed files. Journal of Com-
puter and System Sciences, 52(2):299-307, 1996.

[3] A. Anderson. Sorting and searching revisited. In R. G.
Karlsson and A. Lingas, editors, Proceedings of the 5th

397

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

Scandinavian Workshop on Algorithm Theory, pages 185-
197. Springer-Verlag LNCS n. 1097, 1996.

[4] R. Baeza-Yates and G. Navarro. Block addressing indices
for approximate text retrieval. Journal of the American So-
ciety for Information Science, 51(1):69-82, 2000.

[5] J. Bentley. Programming Pearls. Addison-Wesley, USA,
1989.

[6] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally
adaptive compression scheme. Communication of the ACM,
29(4):320-330, 1986.

[7] M. Burrows and D. Wheeler. A block sorting lossless
data compression algorithm. Technical Report 124, Digital
Equipment Corporation, 1994.

[8] S . Chen and J. Reif. Using difficulty of prediction to de-
crease computation: Fast sort, priority queue and convex
hull on entropy bounded inputs. In Proceedings of the
34th IEEE Symposium on Foundations of Computer Science,
pages 104-112, 1993.

[9] M. Farach and M. Thorup. String matching in Lempel-Ziv
compressed strings. Algorithmica, 20(4):388-404, 1998.

[lo] P. Ferragina and R. Grossi. The string B-tree: A new data
structure for string search in external memory and its appli-
cations. Journal of the ACM, 46:236-280, 1999.

[l l] P. Ferragina, S . Muthukrishnan, and M. deBerg. Multi-
method dispatching: A geometric approach with applica-
tions to string matching problems. In Proceedings of the
31st ACM Symposium on the Theory of Computing, pages
483491, 1999.

[121 R. Grossi and J. Vitter. Compressed suffix arrays and suffix
trees with applications to text indexing and string matching.
In Proceedings of the 32nd ACM Symposium on Theory of
Computing, 2000.

[13] J . Karkkainen and E. Sutinen. Lempel-Zip index for q-
grams. In J. Dfaz and M. Sema, editors, Proceedings of the
4th European Symposium on Algorithms, pages 378-391.
Springer-Verlag LNCS n. 1136, 1996.

[14] J. Karkkcnen and E. Ukkonen. Lempel-Ziv parsing and
sublinear-size index structures for string matching. In N. Zi-
viani, R. Baeza-Yates, and K. GuimarHes, editors, Proceed-
ings of the 3rd South American Workshop on String Process-
ing, pages 141-155. Carleton University Press, 1996.

[15] A. Karlin, S. Phillips, and P. Raghavan. Markov paging (ex-
tended abstract). In Proceedings of the 33rd IEEE Sympo-
sium on Foundations of Computer Science, pages 208-217,
24-27 Oct. 1992.

[161 D. E. Knuth. Sorting and Searching, volume 3 of The Art of
Computer Programming. Addison-Wesley, Reading, MA,
USA, second edition, 1998.

[171 P. Krishnan and J. Vitter. Optimal prediction for prefetching
in the worst case. SIAM Joumal on Computing, 27(6): 1617-
1636, Dec. 1998.

[IS] U. Manber and G. Myers. Suffix arrays: a new method
for on-line string searches. SIAM Joumal on Computing,

[19] U. Manber and S. Wu. GLIMPSE: A tool to search through
entire file systems. In Proceedings of the USENIX Winter
I994 Technical Conference, pages 23-32, 1994.

[20] G. Manzini. An analysis of the Burrows-Wheeler trans-
form. In Proceedings of the 10th ACM-SIAM Symposium
on Discrete Algorithms, pages 669-677, 1999. Full version
inwww.imc.pi.cnr.it/"manzini/tr-99-13/.

22(5):935-948, 1993.

[21] E. M. McCreight. A space-economical suffix tree construc-
tion algorithm. Joumal of the ACM, 23(2):262-27:2, 1976.

[22] K. Mehlhom and M. H. Overmars. Optimal dynamzation of
decomposable searching problems. Information Processing
Letters, 12(2):93-98, Apr. 1981.

[23] J. I. Munro. Succinct data structures. In Proceeding of
the 19th Conference on Foundations of Software Technology
and Theoretical Computer Science. Springer-Verlag LNCS
n. 1738, 1999.

[24] G. Navarro, E. de Moura, M. Neubert, N. Ziviani, and
R. Baeza-Yates. Adding compression to block addressing
inverted indexes. Information Retrieval Journal, 2000, (to

[25] M. H. Overmars and J. van Leeuwen. Worst-case optimal
insertion and deletion methods for decomposable searching
problems. Information Processing Letters, 12(4): 168-173,
Aug. 1981.

[26] K. Sadakane. A modified Burrows-Wheeler transformation
for case-insensitive search with application to suffix array
compression. In Proceedings of IEEE Data Compression
Conference, 1999.

[27] I. H. Witten, A. Moffat, and T. C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Images.
Morgan Kaufmann Publishers, Los Altos, CA 94022, USA,
second edition, 1999.

[28] S . Wu and U. Manber. AGREP - A fast approximate pattem-
matching tool. In Proceedings of the Usenix Winter 1992
Technical Conference, pages 153-1 62. Usenix Association,
1992.

appear).

398

Authorized licensed use limited to: The University of Utah. Downloaded on January 29,2023 at 19:56:57 UTC from IEEE Xplore. Restrictions apply.

