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Abstract 

In this paper we address the issue of compressing and 
indexing data. We devise a data structure whose space oc- 
cupancy is afunction of the entropy of the underlying data 
set. We call the data structure opportunistic since its space 
occupancy is decreased when the input is compressible and 
this space reduction is achieved at no significant slowdown 
in the query pe$ormance. More precisely, its space occu- 
pancy is optimal in an information-content sense because 
a text T [ 1 ,  U] is stored using O ( H k ( T ) )  + o(1) bitsper in- 
put symbol in the worst case, where H k ( T )  is the kth or- 
der empirical entropy of T (the bound holds for any fixed 
k). Given an arbitrary string P[1, p] ,  the opportunistic data 
structure allows to search for the occ occurrences of P in T 
in O(p + occlog‘ U) time Cfor anyfixed E > 0). If data are 
uncompressible we achieve the best space bound currently 
known [12]; on compressible data our solution improves 
the succinct suffix array of [I21 and the classical suffix tree 
and suffix array data structures either in space or in query 
time or both. 

We also study our opportunistic data structure in a 
dynamic setting and devise a variant achieving effective 
search and update time bounds. Finally, we show how 
to plug our opportunistic data structure into the Glimpse 
tool [19]. The result is an indexing tool which achieves 
sublinear space and sublinear query time complexity. 

1 Introduction 

Data structure is a central concept in algorithmics and 
computer science in general. In the last decades it has been 
investigated from different points of view and its basic ideas 
enriched by new functionalities with the aim to cope with 
the features of the peculiar setting of use: dynamic, persis- 
tent, self-adjusting, implicit, fault-tolerant, just to cite a few. 
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Space reduction in data structural design is an attractive is- 
sue, now more than ever before, because of the exponential 
increase of electronic data nowadays available, and because 
of its intimate relation with algorithmic performance im- 
provements (see e.g. Knuth [16] and Bentley [5]). ‘This has 
recently motivated an upsurging interest in the design of im- 
plicit data structures for basic searching problems (see [23] 
and references therein). The goal is to reduce as much as 
possible the auxiliary information kept together with the in- 
put data without introducing any significant slowdown in 
the query performance. However, input data are represented 
in their entirety thus taking no advantage of possible repet- 
itiveness into them. The importance of those issues is well 
known to programmers who typically use various tricks to 
squeeze data as much as possible and still achieve good 
query performance. Their approaches, though, boil down 
to heuristics whose effectiveness is witnessed only by ex- 
perimentation. 

In this paper we address the issue of compressing and in- 
dexing data by studying it in a theoretical framework. From 
the best of our knowledge no other result is known in the 
literature about the study of the interplay between com- 
pression and indexing of data collections. The exploitation 
of data compressibility have been already investigated only 
with respect to its impact on algorithmic performance in the 
context of on-line algorithms (e.g. caching and prefetch- 
ing [15, 17]), string-matching algorithms (see e.g. [ 1,2,9]), 
sorting and computational geometry algorithms [8]. 

The scenario. Most of the research in the design of in- 
dexing data structures has been directed to devise solutions 
which offer a good trade-off between query and update time 
versus space usage. The two main approaches are word- 
based indices andfull-text indices. The former achieve suc- 
cinct space occupancy at the cost of being mainly limited 
to index linguistic texts [27], the latter achieve versatility 
and guaranteed performance at the cost of requiring large 
space occupancy (see e.g. [ 10, 18, 211). Some progress on 
full-text indices has been recently achieved [ 12,231, but an 
asymptotical linear space seems unavoidable and this makes 
word-based indices much more appealing when space oc- 
cupancy is a primary concern. In this context compression 
appears always as an attractive choice, if not mandatory. 
Processing speed is currently improving at a faster rate than 
disk speed. Since compression decreases the demand of 
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storage at the expenses of processing, it is becoming more 
economical to store data in a compressed form rather than 
uncompressed. 

Starting from these promising considerations, many re- 
searchers have recently concentrated on the compressed 
matching problem, introduced in [l] ,  as the task of per- 
forming string matching in a compressed text without de- 
compressing it. A collection of algorithms is currently 
known to solve efficiently (possibly optimally) this prob- 
lem on text compressed by means of various schemes: e.g. 
run-length [l], LZ77 [9], LZ78 [2], Huffman [24]. All of 
these results, although asymptotically faster than the classi- 
cal scan-based methods, they rely on the scan of the whole 
compressed text and thus result still unacceptable for large 
text collections. 

Approaches to combine compression and indexing tech- 
niques are nowadays receiving more and more attention, es- 
pecially in the context of word-based indices, achieving ex- 
perimental trade-offs between space occupancy and query 
performance (see e.g. [4, 19, 271). An interesting idea to- 
wards the direct compression of the index data structure 
has been proposed in [13, 141 where the properties of the 
Lempel-Ziv's compression scheme have been exploited to 
reduce the number of index points, still supporting pattern 
searches. As a result, the overall index requires provably 
sublinear space but at the cost of either limiting the search 
to q-grams [ 131 or worsening significantly the query perfor- 
mance [ 141. 

A natural question arises at this point: Do full-text in- 
dices need a space occupancy linear in the (uncompressed) 
text size in order to support effective search operations on 
arbitrary patterns? It is a common belief [27] that some 
space overhead must be paid to use the full-text indices, but 
is this actually .a provable need? 

Our Results. In this paper we answer the two questions 
above by providing a novel data structure for indexing and 
searching whose space occupancy is afunction of the en- 
tropy of the underlying data set. The data structure is called 
opportunistic in that, although no assumption on a partic- 
ular distribution is made, it takes advantage of the com- 
pressibility of the input data by decreasing the space oc- 
cupancy at no signifcant slowdown in the query perfor- 
mance.' The data structure is provably space optimal in 
an information-content sense because it stores a text T[1, U ]  

using O ( H k ( T ) )  + o(1) bits per input symbol in the worst 
case (for any fixed k >_ 0), where H k ( T )  is the kth order 
empirical entropy. Hk expresses the maximum compres- 
sion we can achieve using for each character a code which 
depends only on the k characters preceding it. We point out 
that in the case of an uncompressible string T, the space 
occupancy is @ ( U )  bits which is actually optimal [12]; for 

'The concept of opportunistic algorithm has been introduced in [9] to 
characterize an algorithm which takes advantage of the compressibility of 
the text to speed up its (scan based) search operations. In our paper, we 
tum this concept into the one of opportunistic datu structure. 

a compressible string, our opportunistic data structure is 
the first to achieve sublinear space occupancy. Given an 
arbitrary pattern P [ l , p ] ,  such an opportunistic data struc- 
ture allows to search for the om occurrences of P in T in 
O ( p  + occ log' U )  time, for any fixed E > 0. 

The novelty of our approach resides in the careful combi- 
nation of the Burrows-Wheeler compression algorithm [7] 
with the the suffix array data structure [ 181 to obtain a sort 
of compressed suffix array. We indeed show how to aug- 
ment the information kept by the Burrows-Wheeler algo- 
rithm, in order to support effective random accesses to the 
compressed data without the need of uncompressing all of 
them at query time. We design two algorithms for operating 
on our opportunistic data structure. The first algorithm is an 
effective approach to search for an arbitrary pattern P [ l , p ]  
in a compressed suffix array, taking O b )  time in the worst 
case (Section 3.1). The second algorithm exploits compres- 
sion to speed up the retrieval of the actual positions of the 
pattern occurrences, thus incurring only in a sublogarithmic 
O(1og' U )  time slowdown for any fixed E > 0 (Section 3.2). 

In some sense, our result can be interpreted as a method 
to compress the suffix array, and still support effective 
searches for arbitrary patterns. In their seminal paper, 
Manber and Myers [18] introduced the suffix array data 
structure showing how to search for a pattern P [ l , p ]  in 
O(p  + logu + occ) time in the worst case. The suffix 
array uses O(u1ogu) bits of storage. Recently, Grossi 
and Vitter [12] reduced the space usage of suffix arrays 
to @ ( U )  bits at the cost of requiring O(1og' U )  time to re- 
trieve the i-th suffix. Hence, searching in this succinct suf- 
fix array via the classical Manber-Myers' procedure takes 
O(p  + log"' u + occ log' U )  time. Our solution therefore 
improves the succinct suffix array of [ 121 both in space and 
query time complexity. The authors of [ 121 introduce also 
other hybrid indices which achieve better query-time com- 
plexity but yet require n(u) bits of storage. As far as the 
problem of counting the pattern occurrences is concerned, 
our solution improves the classical suffix tree and suffix ar- 
ray data structures, because they achieve R(p) time com- 
plexity and occupy n(u logu) bits of storage. 

In Section 4, we investigate the modifiability of our 
opportunistic data structure by studying how to choreo- 
graph its basic ideas with a dynamic setting. We show 
that a dynamic text collection A of size U can be stored in 
O(Hk(A)) + o ( l )  bit per input symbol (for any fixed k >_ 0 
and not very short texts), support insert operations on indi- 
vidual texts T[1, t ]  in O(t1o U )  amortized time, delete op- 
erations on T[1, t]  in O(t log U )  amortized time, and search 
for a pattern P[1, p ]  in O(p  log3 u + occ log U )  time in the 
worst case. We point out that even in the case of an uncom- 
pressible text T ,  our space bounds are the best known ones 
since the data structures in [12] do not support updates (the 
dynamic case is left as open in their Section 4). 

Finally, we investigate applications of our ideas to the 
development of novel text retrieval systems based on the 
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concept of block addressing (first introduced in the Glimpse 
tool [ 191). The notable feature of block addressing is that 
it can achieve both sublinear space overhead and sublinear 
query time, whereas inverted indices achieve only the sec- 
ond goal [4]. Unfortunately, up to now all the known block 
addressing indices [4, 191 achieve time and space sublinear- 
ity only under some restrictive conditions on the block size. 
We show how to use our opportunistic data structure to de- 
vise a novel block addressing scheme, called CGlimpse 
(standing for Compressed Glimpse), which always achieves 
time and space sublinearity. 

2 Background 

Let T[1, U ]  be a text drawn from a constant-size alphabet 
E. A central concept in our discussion is the su& array 
data structure [18]. The suffix array A built on T[1, U ]  is an 
array containing the lexicographically ordered sequence of 
the suffixes of T ,  represented via pointers to their starting 
positions (i.e., integers). For instance, if T = ababc then 
A = [ l ,  3,2,4,5]. Clearly A requires U log, U bits, actually 
a lot when indexing large text collections. It is a long stand- 
ing belief that suffix arrays are uncompressible because of 
the “apparently random” permutation of the suffix pointers. 
Recent results in the data compression field have opened the 
door to revolutionary ways to compress suffix arrays and are 
basic tools of our data structure. 

In [7], Burrows and Wheeler propose a transformation 
(BWT from now on) consisting of a reversible permutation 
of the text characters which gives a new string that is “eas- 
ier to compress”. The BWT tends to group together char- 
acters which occur adjacent to similar text substrings. This 
nice property is exploited by locally-adaptive compression 
algorithms, such as move-to-front coding [6], in combina- 
tion with statistical (i.e. Huffman or Arithmetic coders) or 
structured coding models. The BWT-based compressors are 
among the best compressors currently available since they 
achieve a very good compression ratio using relatively small 
time and space. 

The reversible BWT. We distinguish between a for- 
ward transformation, which produces the string to be com- 
pressed, and a backward transformation which gives back 
the original text from the transformed one. The forward 
BWT consists of three basic steps: (1) Append to the end 
of T a special character # smaller than any other text char- 
acter; (2) form a conceptual matrix M whose rows are the 
cyclic shifts of the string T# sorted in lexicographic order; 
(3) construct the transformed text L by taking the last col- 
umn of M .  Notice that every column of M is a permuta- 
tion of the last column L, and in particular the first column 
of M ,  call it F ,  is obtained by lexicographically sorting the 
characters in L. 

There is a strong relation between the matrix M and the 
suffix array A of the string T .  When sorting the rows of 
the matrix M we are essentially sorting the suffixes of T .  

Consequently, entry A[i] points to the suffix of T occupying 
(a prefix of) the ith row of M .  The cost of performing the 
forward BWT is given by the ‘Cost of constructing the suffix 
array A, and this requires O(U) time [21]. 

The cyclic shift of the rows of M is crucial to define 
the backward BWT, which is based on two easy to prove 
observations [7]: 

a. Given the ith row of M ,  its last character L[i] precedes 
its first character F[i] in the original text T ,  namely 

b. Let L[i] = c and let ri be the number of occurrences 
of c in the prefix L[1, i ] .  Let M [j] be the ri-th row of 
M starting with c. The character in the first column F 
corresponding to L[i] is located at F[j ] .  We call this 
LF-mapping (Last-to-First mapping) and set LF[i] = 

T = . * * L[i]F[i] . * *. 

j. 

We are now ready to describe the backward BWT: 

1. Compute the array C [ 1 . .  . lEl] storing in C[c] the 
number of occurrences in T of the characters 
{#, 1 , .  . . , c - 1). Notice that C[c] + 1 is the posi- 
tion of the first occurrence of c in F (if any). 

2. Define the LF-mapping L F [ l . .  . U  + 11 as follows: 
LF[i] = C[L[i]]  + r i ,  where r i  equals the number of 
occurrences of the character L[i] in the prefix L[ l , i ]  
(see observation (b) above). 

3. Reconstruct T backward as follows: set s = 1 and 
T[u] = L[1] (because M[1]  = #T);  then, for each 
i = U - 1 , .  . . , l  do s = LF[s] and T[i] = L[s]. 

In [26] it is shown how to derive the suffix a r r ~ y  A from 
L in linear time; however, in the context of pattern search- 
ing, the algorithm in [26] is no better than the known scan- 
based opportunistic algorithms (such as [9]). Nonetheless, 
the implicit presence of the suffix array A into L suggests to 
take full advantage of the structure of A for fast searching, 
and of the high compressibility of L for space reduction. 
This is actually the ultimate hope of any indexer: succinct 
and fast! In the next section, we show that this result is 
achievable provided that a sublogarithmic slowdown (wrt 
the suffix array) is introduced in the cost of listing the pat- 
tern occurrences. 

Let Tbw = bwt(T) denote the last column L, output of 
the BWT. Our indexing data structure consists of a com- 
pressed version of Tb” together with some other auxiliary 
array-based data structures that support random access to 
Tbw.  We compress TbW in three steps (see also [20]): 

1. Use a move-to-front coder, briefly m t  f [6], to encode 
a character c via the count of distinct characters seen 
since its previous occurrence. The structural proper- 
ties of TbW, mentioned above, imply that the string 
Tmtf = mtf (T”) will be dominated by low numbers. 
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2. Encode each run of zeroes in Tmtf using run length 
encoding (rle). More precisely, replace the sequence 
0" with the number (m + 1) written in binary, least 
significant bit first, discarding the most significant bit. 
For this encoding we use two new symbols 0 and 1 so 
that the resulting string Tr' = rle(Tmtf) is over the 
alphabet {0,1,1,2,. . ., 1x1 - 1). 

3. Compress T" by means of a variable-length prefix 
code, called Pc, which encodes the symbols 0 and 1 
using two bits (10 for 0, 11 for l), and the symbol i us- 
ing a variable-length prefix code of 1 + 2 [log(i + 1) J 
bits, the first one being a zero. 

The resulting algorithm BWRLX = bwt + m t f  + r l e  + 
PC is sufficiently simple so that in the rest of the paper we 
can concentrate on the searching algorithm without being 
distracted by the details of the compression. Despite of the 
simplicity of BWRLX, using the results in [2012 it is possible 
to show that (proof in the full paper), for any k 3 0 and for 
any T there exists a constant gk such that 

where Hk is the kth order empirical entropy. Hk expresses 
the maximum compression we can achieve using for each 
character a code which depends only on the k characters 
preceding it. 

3 Searching in BWT-compressed text 

Let T[1, U ]  denote an arbitrary text over the alphabet E, 
and let 2 = BWRLX(T). In this section we describe an algo- 
rithm which, given a pattern P[1, p ] ,  reports all occurrences 
of P in the uncompressed text T by looking only at 2 and 
without uncompressing all of it. Our algorithm makes use 
of the relation between the suffix array A and the matrix 
M. Recall that the suffix array A posses two nice structural 
properties which are usually exploited to support fast pat- 
tern searches: (i) all the suffixes of the text T prefixed by 
a pattern P occupy a contiguous portion (subarray) of A; 
(ii) that subarray has starting position s p  and ending posi- 
tion ep, where sp is actually the lexicographic position of 
the string P among the ordered sequence of text suffixes. 

3.1 Step I: Counting the occurrences 

We now describe an algorithm, called BW-Count, which 
identifies the positions s p  and ep by accessing only the com- 
pressed string 2 and some auxiliary array-based data struc- 
tures. 

BW-Count consists of p phases each one preserving the 
following invariant: At the i-th phase, the parameter s p  

*The algorithm BWRLX corresponds to the procedure A' described 
in [20] 

Algorithm BW-Count(P[l, p]) 

1. c = Pb], i = p; 

2. sp = C[c] + 1, ep = C[c + 11; 
3. while ( ( s p  5 ep) and (i 2 2)) do 
4. 

5. 
6. 
7. i = i - l ;  

8. if (ep  < sp) then return "pattern not found" 

c = P[i - 11; 
sp  = C[C] + Occ(c, 1, s p  - 1) + 1; 

ep = C[c] + OCC(C, 1, ep);  

else return "found (ep  - sp + 1) occurrences" 

Figure 1. Algorithm for counting the number 
of occurrences of P[l,p] In T[l,u]. 

points to thefirst row of M prejixed by P [ i , p ]  and the pa- 
rameter ep points to the last row of M prefied by P[i,p]. 
The pseudo-code is given in Fig. 1. In the first phase (i.e. 
i = p), s p  and ep are determined via the array C defined 
in Section 2 (Step 2). The values sp and ep are updated 
at Steps 5 and 6 using the subroutine Occ(c, 1, k) which 
reports the number of occurrences of c in TbW[l, k]. Note 
that at Steps 5 and 6 we are computing the LF-mapping 
for, respectively, the first and the last occurrence (if any) of 
P[i - 11 in Tbw[sp, ep]. If at the generic ith phase we have 
ep < sp  we can conclude that P[i ,p]  does not occur in T 
and hence P does not too. After the final phase, sp and ep 
will delimit the portion of M (and thus of the suffix array 
A) containing all the text suffixes prefixed by P. The in- 
teger (ep  - sp + 1) will therefore account for the number 
of occurrences of P in T. The following lemma proves the 
correctness of BW-Count assuming Occ works as claimed 
(proof in the full paper). 

Lemma 1 For i = p ,  p - 1, . . . ,2, if P[i - 1, p ]  occurs in T 
then Step 5 (resp. Step 6) of BW-Count correctly updates 
the value of s p  (resp. ep) thus pointing to the first (resp. 

I last) row prejixed by P[i - l,p]. 

The running time of BW-Count depends on the cost of 
the procedure OCC. We now describe an algorithm for com- 
puting OcC(c, 1, k) in O(1) time, on a RAM with word size 
O(logu) bits. 

We logically partition the transformed string Tbw into 
substrings of e characters each (called buckets), and denote 
them by BTi = Tbw[(i  - l)! + l,ie], fo r i  = 1 , .  . . ,./e. 
This partition naturally induces a partition of Tmtf into 
u/e buckets B T y t f , .  . . , BTU";:f of size e too. We as- 
sume that each run of zeroes in Tmtf  is entirely con- 
tained in a single bucket and we describe our algorithm 
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for computing OCC(C, 1 ,  k )  under this simplifying assump- 
tion. The general case in which a sequence of zeroes may 
span several buckets is similar and thus its discussion is de- 
ferred to the full paper. Under our assumption, the buck- 
ets BTYtf's induce a partition of the compressed file Z 
into u/e compressed buckets BZ1,.  . . , BZ,/e, defined as 

Let BTi denote the bucket containing the charac- 
ter Tbw[k] (namely i = [ k / e l ) .  The computation of 
OCC(C, 1 ,  k )  is based on a hierarchical decomposition of 
TbW[l ,k]  in three substrings as follows: (i) the longest 
prefix of Tbw[l ,k]  having length a multiple of C2 (i.e. 
BT1 . - .  BTep, where i* = IF]), (ii) the longest pre- 
fix of the remaining suffix having length a multiple of e (i.e. 
BTe(*+I e BTi-l), and finally (iii) the remaining suffix 
of Tbw[l ,  k] which is indeed a prefix of the bucket BTi. 
We compute Occ(c, 1 ,  k) by summing the number of oc- 
currences of c in each of these substrings. This can be done 
in 0(1) time and sublinear space using the following auxil- 
iary data structures. 
For the calculations on the substring of point (i): 

BZi = PC(rle(BTytf)). 

0 Fori = 1 , .  . . , u/12, the array NOi[l ,  lCl] stores in the 
entry NOi[c] the number of occurrences of the charac- 
ter c in BT1 . . BTu. 

0 The array W[1,  u/12] stores in the entry W[i]  the value 
I BZj 1 equals to the sum of the sizes of the com- 

pressed buckets BZ1,. . . , BZit. 

For the calculations on the substring of point (ii): 

0 Fori = 1 , .  . . , U / [ ,  the array NOI[l, lCl] stores in the 
entry NOi[c] the number of occurrences of the char- 
acter c in the string BTi.+l . . . BTi-1 (this concate- 
nated string has length less than 12). 

0 The array W ' [ l , u / q  stores in the entry W'[i] the 
value lBZj I equals to the overall size of the 
compressed buckets BZi++l, . . . , BZi-1 (the value is 
bounded above by O(e2)). 

For the calculations on the (compressed) buckets: 

0 The array MTF[ l ,  u / 4  stores in the entry MTF[i] a 
picture of the state of the MTF list at the beginning of 
the encoding of BTi. Each entry takes IC( log 1x1 bits 
(i.e. 0(1) bits). 

0 The table S stores in the entry S[c, j, b, m] the num- 
ber of occurrences of c among the first j characters 
of the compressed string b, assuming that m is the 
picture of the MTF list used to produce b. Thus, en- 
try S[c, j, BZi,  MTF[i]] stores the number of occur- 
rences of c in B T i [ l , j ] .  Table S has 0(t2e') entries 
each one occupying O(1og t) bits, where e' is the max- 
imum length of a compressed bucket. 

The computation of OCC(C, 1 ,  k )  therefore proceeds as 
follows. First, the bucket BTi containing the character c = 

Tbw[k] is determined via i = [k/.!l,  together with the posi- 
tion j = k- (i - l)l of this character in BTi and the param- 
eter i* = [(k - l)/12]. Then the number of occurrences 
of c in the prefix BT1 . . BTei. (point (i)) is determined 
via NOi.[c], and the number of occurrences of c in the 
substring BTti., . . . , BTi-1 (point (ii)) is determined via 
NO:[c]. Finally, the compressed bucket BZi is rletrieved 
from Z (notice that W[i*]+W'[i]+l is its startingposition), 
and the number of occurrences of c within BTi [ l ,  j ]  are ac- 
counted accessing S[c, j, BZi, MTF[i]] in 0(1) time. The 
sum of these three quantities gives Occ(c, 1 ,  k). 

By construction any compressed bucket BZi has size at 
most e' = ( 1  + 2 l1ogCJ)e bits. We choose L = @(logu) 
so that e l  = clogu with c < 1. Under this assumption, 
every step of OCC consists of arithmetic operations or table 
lookup operations involving O(1og u)-bit operands. Conse- 
quently every call to OCC takes O( 1 )  time on a RAM. As far 
as the space occupancy is concerned, the arrays NO and W 
take O((u/C2) logu) = O(u/logu) bits. The arrays NO' 
and W' take O( ( U / [ )  log e )  = O( ( U /  log U )  log log U) bits. 
The array MTF takes O(u/l?) = O(u/  logu) bits. Table 
S consists of O(t2") loge-bit entries and thus it occupies 
0(2e'.tlogC) = O(zf1oguloglogu) bits, where c < 1.  
We conclude that the auxiliary data structures used by OCC 
occupy O( (U/ log U) log log U )  bits (in addition to the com- 
pressed file Z ) .  

Theorem 1 Let Z denote the output of the allgorithm 
BWRLX on input T[1, U ] .  The number of occurrences of a 
pattern P[ l ,p ]  in T[1,  U] can be computed in O(p)  time on 
a RAM. The space occupancy is 121 + 0 (& loglogu 
bits in the worst case. I 

1 
3.2 Step 11: Locating the occurrences 

We now consider the problem of determining the exact 
position in the text T of all the occurrences of the pattern 
P [ l , p ] .  This means that fors = sp,  sp+ 1 , .  . . , ep, we want 
to find the text position pos(s) of the suffix which prefixes 
the sth row M [SI. We propose two approaches: the first one 
is simple and slow, the second one is faster and relies on the 
very special properties of the the string TbW. 

In the first algorithm we logically mark the rows of M 
which correspond to text positions having the fomi 1 + iq, 
for q = @(log2 U )  and i = 0 , 1 , .  . . ,u/q. We store with 
these marked rows the starting positions of the correspond- 
ing text suffixes explicitly. This preprocessing is done at 
compression time. At query time we find pos(s) as fol- 
lows. Ifs is a marked row, then there is nothing to be done 
and its position is directly available. Otherwise, we use the 
LF-mapping to find the row s' corresponding to the suffix 
T[pos(s) - l , ~ ] .  We iterate this procedure w times until 
s' points to a marked row; at that point pos(s') is available 
and we set pos(s) = pos(s') + w. The crucial point of 
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the algorithm is the logical marking of the rows of M cor- 
responding to the text suffixes starting at positions 1 + iq, 
i = 0,.  . . ,u/q. Our solution consists in storing the row 
numbers in a two-level bucketing scheme. We partition the 
rows of M into buckets of size @(log2 U )  each. For each 
bucket, we take all the marked rows lying into it, and store 
them into a Packet B-tree [3] using as a key their distance 
from the be inning of the bucket. Since a bucket contains at 
most O(1og U )  keys, each O(1og log u) bits long, member- 
ship queries take O(1) 'time on a RAM. The overall space 
required for the logical marking is O((u/v)  loglogu) bits. 
In addition, for each marked row we also keep the starting 
position of the corresponding text suffix (i.e. pos()) ,  which 
requires additional O(1og U )  bits per marked row. Conse- 
quently, the overall space occupancy is O( (u/q) log U )  = 
O(u/ logu) bits. For what concerns the time complexity, 
our algorithm computes pos(s) in at most q = @(log2 U )  

steps, each taking constant time. Hence the occ occurrences 
of a pattem P in T can be retrieved in O(occ log2 U )  time, 
with a space overhead of O(u/ log U )  bits. Combining the 
results of this section with (1) we have: 

Theorem 2 A text T[1,  U ]  can be preprocessed in O(u) 
time so that all the occ occurrences of a pattem P[ l , p ]  in 
T can be listed in O(p + occlog2 U )  time on a RAM. The 
space occupancy is bounded by 5Hk(T) + O( v) bits 
per input symbol in the worst case, for anyjixed k 3 0. I 

We now refine the above algorithm in order to compute 
pos(s) in O(1og' U )  time for any fixed E > 0. We still use 
the idea of marking some of the rows in M, however we in- 
troduce some shortcuts which allow to move in T by more 
that one character at a time, thus reducing the number of 
steps required to reach a marked position. The key ingredi- 
ent of our new approach is a procedure for computing the 
LF-mapping over a string !#? drawn from an alphabet A of 
non-constant size (proof and details in the full paper): 

Lemma2 Given a string !#?[l,v] over an arbitrary al- 
phabet A, we can compute the LF-mapping over Fbw in 
O(1og' w) time using O(v(1 + H k ( ! # ? ) )  + IAlk+' (log 1111 + 

I 

9 

log U)) bits of storage, for any given E > 0. 

we use Lemma 2 to computepos(s) in O(log(1/2)+2' 
time; this is an intermediate result that will be then refined 
to achieve the final O(1og' U )  time bound. 

At compression time we logically mark the rows of M 
which correspond to text positions of the form 1 + iy for 
i = 0,.  . . , u/y and y = @(log(1/2)+' U ) .  Then, we con- 
sider the string TO obtained by grouping the characters of T 
into blocks of size y. Clearly TO has length u / y  and its char- 
acters belong to the alphabet Cr. Let M O  denote the cyclic- 
shift matrix associated to TO; notice that M O  consists of the 
marked rows of M. Now we mark the rows of M O  corre- 
sponding to the suffixes of TO starting at the positions 1 +iq, 
for i = 0 , .  . . , IToI/q and 77 = U ) .  For these 

rows we explicitly keep the starting position of the corre- 
sponding text suffixes. To compute pos(s) we first compute 
the LF-mapping in M until we reach a marked row s'. Then 
we compute pos(s') by finding its corresponding row in 
M O  and computing the LF-mapping in M O  (via Lemma 2) 
until we reach a marked row s" in M O  (for which pos(s'') 
is explicitly available by construction). The marking of T 
and the counting of the number of marked rows in M that 
precede a given marked row s' (this is required in order to 
determine the position in M O  of M [s']) can be done in con- 
stant time and O(F log log U )  bits of storage using again a 
Packed B-tree and a two level bucketing scheme as before. 
In addition, for @(ITol/q) rows of M O  we keep explic- 
itly their ositions in TO which take @((lTol/q) logu) = 
@ ( U /  log ' U )  bits of storage. The space occupancy of the 
procedure for computing the LF-mapping in Ttw is given 
by Lemma 2. Since Hk(T0) 5 y H k y ( T ) ,  a simple alge- 
braic calculation yields that the overall space occupancy is 
0 (Hk (T)  + &) bits per input symbol, for any fixed k. 
The time complexity of the algorithm is O(y) (for finding a 
marked row in M) plus O(q log' U )  (for finding a marked 
row in MO),  thus O(log(1/2)+2' U )  time overall. 

The final time bound of O(1og' U )  for the computation 
of pos(s) can be achieved by iterating the approach above 
as follows. The main idea is to take yo = O(log'u), 
and apply the procedure for computing the LF-mapping in 
TO for O(1og'u) steps, thus identifying a row s1 of the 
matrix M O  such that pos(s1) has the form 1 + iyl with 
y1 = @(log2'u). Next, we define the string TI obtained 
by grouping the characters of T into blocks of size y1 and 
we consider the corresponding matrix M I .  By construction 
s1 corresponds to a row in M I  and we can iterate the above 
scheme. At the j th  step we operate on the matrix M j - 1  un- 
til we find a row sj such that pos(s j )  has the form 1 + iyj  
where yj = @(log(j+')' U ) .  This continues until j reaches 
the value [ l / c l .  At that point the matrix M j  consists of 
@ ( U /  U )  rows, where 6 = [l/El E - 1 .  Since we 
can always choose E so that 6 > 0, we can store explic- 
itly the starting positions pas() of the marked text suffixes 
in M j  using sublinear space, i.e. o(u) bits. Summing up, 
the algorithm com utespos(s) in [ l / ~ ]  = @ ( 1 )  iterations, 
each taking @(log U )  time. Since E is an arbitrary positive 
constant, it is clear that we can rewrite the previous time 
bound as @(+) = @(log' U ) .  The space occupancy is 
dominated by the one required for the marking of M .  

B 

z 

Theorem 3 A text T[1,  U ]  can be indexed so that all the 
occ occurrences of a pattern P [ l , p ]  in T can be listed in 
O(p + occ log' U )  time on a RAM. The space occupancy 
is o (Hk  (T) + ':$r) bits per input symbol in the worst 

I case, for any@ed k 2 0. 
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4 Dynamizing our approach 

Let A be a dynamic collection of texts {TI , .  . . , Tm} 
having arbitrary lengths and total size U. Collection A may 
shrink or grow over the time due to insert and delete oper- 
ations which allow to add or remove from A an individual 
text string. Our aim is to store A in succinct space, perform 
the update operations efficiently, and support fast searches 
for the occurrences of an arbitrary pattern P [ l , p ]  into A's 
texts. This problem can be solved in optimal time complex- 
ity and O(u1ogu) bits of storage [lo, 211. In the present 
section we aim at dynamizing our compressed index in or- 
der to keep A in a reduced space and be able to efficiently 
support update and search operations. Our result exploits 
an elegant technique proposed in [22, 251, here adapted to 
manage items of variable lengths (i.e. texts). 

In the following we bound the space occupancy of our 
data structure in terms of the entropy of the concatenation of 
A's texts. A better overall space reduction might be possi- 
bly achieved by compressing separately the texts Ti's. How- 
ever, if the texts Ti's have similar statistics, the entropy of 
the concatenated string is a reasonable lower bound to the 
compressibility of the collection. Furthermore, in the prob- 
abilistic setting where we assume that every text is gener- 
ated by the same probabilistic source, the entropy of the 
concatenated string coincides with the entropy of the sin- 
gle texts and therefore provides a tight lower bound to the 
compressibility of the collection. 

In the following we focus on the situation in which the 
length p of the searched pattern is O( &) because for the 
other range of p's values, the search operation can be im- 
plemented in a brute-force way by first decompressing the 
text collection and by then searching for P into it using a 
scan-based string matching algorithm in O(p log3 U + ow) 
time. We partition the texts ~ i ' s  into q = @(log2 U) col- 
lections C', . . . , Cq, each containing texts of overall length 
O(+). This is always possible, independently of the 
lengths of the text strings in A, since the upper bound on the 
length of the searchable patterns allows us to split very long 
texts (i.e. texts of lengths Q( +)) into 2 log2 U pieces 
overlapping for O( &) characters. This covering of a 
single long text with many shorter ones still allows us to 
find the occurrences of the searched patterns. 

Every collection C h  is then partitioned into a series of 
subsets Sf defined as follows: Sf contains some texts 
of C h  having overall length in the range [2i, 2i+'), where 
i = O(1ogu). Each set Sf is simultaneously indexed and 
compressed using our opportunistic data structure. Search- 
ing for an arbitrary pattern P[1, p ]  in A, with p = O( +) 
can be performed by searching for P in all the O(10g3 U) 
subsets Sf via the compressed index built on each of them. 
This takes ~ ( p  log3 U + occ log' U) time overall. 

Inserting a new text T[1, t] into A consists of insert- 
ing T into one of  the sets C h ,  the most empty one. Then, 

the subset Sf is selected, where i = LlogtJ, andl T is in- 
serted into it using the following approach. If Sf is empty 
then the compressed index is built for T and associated to 
this subset, thus taking O(t)  time. Otherwise the new set 
Sf U { T }  is formed and inserted in Sf+l. If the latiter subset 
is not empty then the insertion process is propagated until an 
empty subset Sf+j is found. At this point, the compressed 
index is built over the set Sf U . . . U S&j-l U {T} ,  by 
concatenating all the texts contained in this set to form a 
unique string, texts are separated by a special symbol (as 
usual). By noticing that these texts have overall length 
0(2'+j), we conclude that this propagation process has a 
complexity proportional to the overall length of the moved 
texts. Although each single insertion may be very costly, we 
can amortize this cost by charging O(1og U) credits per text 
character (since i,j = O(logu)), thus obtaining an overall 
amortized cost of O(t1ogu) to insert T[l , t ]  in A. Some 
care must be taken to evaluate the space occupied during 
the reconstruction of the set Sf. In fact, the coristruction 
of our compressed index over the set S! requires the use 
of the suffix tree data structure (to compute the BWT) and 
thus O(2i log 2') bits of auxiliary storage. This could be too 
much, but we ensured that every collection C h  contains texts 
having overall length O( &). So that at most O( e) 
bits suffices to support any reconstruction process. 

We now show how to support text deletions from A. The 
main problem here is that from one side we would like to 
physically cancel the texts in order to avoid the listing of 
ghost occurrences belonging to texts no longer in A; but 
from the other side a physical deletion would be too much 
time-consuming to be performed on-the-fly. Amortization 
can still be used but much care must be taken when answer- 
ing a query to properly deal with texts which have been log- 
ically deleted from the Sf's. For the sake of presentation 
let Tbw be the BWT of the texts stored in some set Sf. We 
store in a balanced search tree the set Zf of interval posi- 
tions in TbW occupied by deleted text suffixes. If a pattern 
occurrence is found in Tbw using our compressed index, 
we can check in O(1og U) time if it is a real or a ghost oc- 
currence. Every time a text T[1, t] must be deleted from 
Sf, we search for all of its suffixes in Sf and then update 
accordingly Zf in O(t  log U) time. The additional space re- 
quired to store the balanced search tree is O( lZf I log U) = 
O( e) bits, where we are assuming to physically delete 
the texts from Sf as soon as a fraction of O(Fgk) suf- 
fixes is logically marked. Hence, each set Sf may undergo 
O(log2 U) reconstructions before it shrinks enough to move 
back to the previous set Sf'l. Consequently the amortized 
cost of delete is O(t log U + t log2 U) = O(t log2 U), where 
the first term denotes the cost of I f ' s  update and the second 
term accounts for the credits to be left in order to pay for 
the physical deletions. 

Finally, to identify a text to be deleted we append to ev- 
ery text in A an identifier of O(1ogu) bits, and we keep 
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track of the subset Sf containing a given text via a table. 
This introduces an overhead of O(m1ogu) bits which is 
.(U) if we reasonably assume that the texts are not too short, 
i.e. w(1ogu) bits each. 

Theorem4 Let A be a dynamic collection of texts 
{TI, T2,. , . , T,) having total length U .  All the occ occur- 
rences of a pattern P[l,p] in the texts of A can be listed 
in O(p log3 U + occ log U )  time in the worst case. Opera- 
tion insert adds a new text T[1, t] to A in O(t log U )  amor- 
tized time. Operation delete removes a text T[l,t] from 
A in O(t log2 U) amortized time. The space occupancy is 
0 (HI ,  (A) + m F) + o( 1) bits per input symbol in the 

I worst case for any f i ed  k 2 0. 

5 A simple application 

Glimpse [ 191 is an effective tool to index linguistic texts. 
From a high level point of view, it is a hybrid between in- 
verted files and scan-based approaches with no index. It 
relies on the observation that there is no need to index every 
word with an exact location (as it occurs in inverted files); 
but only pointers to an area where the word occurs (called 
a block) should be maintained. Glimpse assumes that the 
text T[1, U ]  is logically partitioned into T blocks of size b 
each, and thus its index consists of two parts: a vocabulary 
V containing all the distinct words of the text; and for each 
word w E V, a list L(w) of blocks where the word w occurs. 
This blocking scheme induces two space savings: pointers 
to word occurrences are shorter, and the occurrences of the 
same word in a single block are represented only once. Typ- 
ically the index is very compact: 2-4% of the original text 
size [19]. 

Given this index structure, the search scheme proceeds in 
two steps: first the queried word w is searched in the vocab- 
ulary V ,  then all candidate blocks of L(w)  are sequentially 
examined to find all the w’s occurrences. Complex queries 
(e.g. approximate or regular expression searches) can be 
supported by using Agrep [28] both in the vocabulary and 
in the block searches. Clearly, the search is efficient if the 
vocabulary is small, if the query is enough selective, and if 
the block size is not too large. The first two requirements 
are usually met in practice, so that the main constraint to the 
effective use of Glimpse remains the strict relation between 
block-pointer sizes and text sizes. Theoretical and exper- 
imental analysis of such block-addressing scheme [4, 191 
have shown that the Glimpse approach is effective only for 
medium sized texts (roughly up to 200Mb). Recent papers 
tried to overcome this limitation by compressing each text 
block individually and then searching it via proper oppor- 
tunistic string-matching algorithms [ 19, 241. The experi- 
mental results showed an improvement of about 30-50% 
in the final performance, thus implicitly proving that the 
second searching step dominates Glimpse’s query perfor- 
mance. 

Our opportunistic index naturally fits in this block- 
addressing framework and allows us to extend its applica- 
bility to larger text databases. The new approach, named 
Compressed Glimpse (shortly CG1 impse), consists in us- 
ing our opportunistic data structure to index each text block 
individually; this way, each candidate block is not fully 
scanned at query time but its index is employed to fasten 
the detection of the pattern occurrences. In some sense 
CGlimpse is a compromise between a full-text index (like 
a suffix array) and a word-based index (like an inverted list) 
over a compressed text. 

A theoretical investigation of the performance of 
CGlimpse is feasible using a model generally accepted 
in Information Retrieval [4]. It assumes the Heaps law to 
model the vocabulary size (i.e. V = 0 ( d )  with 0 < p < 
l), the generalized Zipf’s law to model the frequency of 
words in the text collection (i.e. the largest ith frequency of 
a word is u/( ieHF’) ,  where H f )  is a normalization term 
and t9 is a parameter larger than l), and assumes that 0(uP) 
is the number of matches for a given word with IC 2 1 errors 
(where p < 1). Under these hypothesis we can show that 
CG1 impse achieves both sublinear space overhead and 
sublinear query time independent of the block size (proof 
in the full paper). Conversely, inverted indices achieve only 
the second goal [U], and classical Glimpse achieves both 
goals but under some restrictive conditions on the block 
size [4]. 

6 Conclusions 

Some issues remain still to be investigated in various 
models of computation. In external memory, it would be 
interesting to devise a compressed index which takes ad- 
vantage of the blocked access to the disk and thus achieves 
O(occ/B) I/Os for locating the pattern occurrences, where 
B is the disk-page size. In the RAM, it would be interest- 
ing to avoid the o(1og U) overhead incurred in the listing of 
the pattern occurrences. In the full paper we will show how 
to use known techniques (see e.g. [ 111) for designing hy- 
brid indices which achieve O(occ) retrieval time cost under 
restrictive conditions either on the pattern length or on the 
number of pattern occurrences. Guaranteeing the ~ ( O C C )  

retrieval cost in the general case is an open problem also in 
the uncompressed setting [ 121. 
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