last time: product construction


Is trio the smallest DFA for $L$ Two states $q, q^{\prime}$ are distinguishable iff
there is a string $w$ sit. $\delta^{*}(q, w)$ or $\delta^{*}\left(q^{\prime}, w\right)$ is accepting but not both.
$s$ and accept are distinguished by $S$ and $O$ are "
$s$ and 1
0 and I
il
"
11

0 and accept"

$$
110 \text { or l }
$$

I and accept"
Two strings $x$ and $y$ are distinguishable with respect to language $L$ iff there exists string $z$ s.t. $x z \in L$ or $y z \in L$ but not both.

$$
L=(0+1)^{*}(00+11)(0+1)^{*}
$$

0 and I distinguishable?

$$
\begin{array}{ll}
\downarrow & y \\
x & y
\end{array}
$$

idea: $z=\varepsilon$

$$
\begin{aligned}
& x z=0 \varepsilon=0 \notin L \\
& y z=1 \varepsilon=1 \notin L
\end{aligned}
$$

idea: $z=1$

$$
\begin{aligned}
& x z=01 \notin L \\
& y z=11 \in L
\end{aligned}
$$

A fooling set for language $L$ is a set of strings that ave all mutually distinguishable.
$F=\{\varepsilon, 0,1,00\}$ is a fooling set for $L=(0+1)^{*}(00+11)(0+1)^{*}$.
$\mathcal{E}, 0$ distinguished by 0
$\varepsilon, 1$
$\varepsilon, 00$
0,1
0,00
1,00

For any language,

$$
\begin{aligned}
& \min \# \text { of states in } a= \text { of strings } \\
& \text { D FA accepting } \\
& \text { mat language } \\
& \text { in fooling } \\
& \text { foot for } \\
& \text { mat language }
\end{aligned}
$$

anat if there is an infinite fooling set?
tree any DFA accepting that language has infinite states... so it cant exist!
Kleene's Theorem:
$0^{*} I^{*}$ regular $=$ automatic

$$
\begin{aligned}
& L=\left\{0^{n} 1^{n}: n \geqslant 0\right\} \varepsilon, 01,0011, \\
& \text { et } F=\{\varepsilon, 0,00,000,0000 \in \dot{L} \text { means }
\end{aligned}
$$

$F$ is a fooling set for $L$. $011 \notin L$
$\varepsilon, 0$ distinguished by $1 \quad \mid \& L, 01 \in L$ $\varepsilon, 00$ $11\|\notin L \quad 00\| \in L$

| 0,00 | $11 \in L$ |
| :--- | :--- |
| $\varepsilon, 000$ |  |
| 0,000 | 111 |
| 00,000 |  |

let $F=O^{*}=\{\varepsilon, 0,00,000,0000, \ldots\}$ $O^{i}, 0^{j}$ for $i \geqslant 0, j \geqslant 0, i \neq j$
Let $z=i^{i}$
$0^{i} 1^{i} \in L$
Oj $\ddagger \mathrm{L}$ because if
$F$ is infinite, so $L$ is not regular!

Theorem: $L=\left\{0^{n} 1^{n}: n \geqslant 0\right\}$ is not regular.
Proof:
Let $F=O^{*}$
different
Let $x, y$ be arbitrary elements of $F$.
So $x=0^{i}$ and $y=0$ for $i \neq j \geqslant 0, j \geqslant 0$, $i \neq j$.
let $z=1^{i}$

- $x z=0^{i} 1^{i} \in L$
- $y z=0^{i} 1^{i} \notin L$ because $i \neq j$
so $z$ distinguishes $x$ and $y$.
SO $F$ is a fooling set for $L$.
But $F$ is infinite, so $L$ is not regular.

Consider $L=$ palindromes =

$$
\begin{aligned}
& \{\omega: w=\operatorname{rev}(w)\} \\
& 001010100
\end{aligned}
$$

Theorem: $L$ is not regular.
Proof. Consider the set $F=\left\{0^{n} 1: n \geqslant 0\right\}$. Let $x, y$ be arbitrary strings from $F$ with $x \neq y$.
Then $x=0^{i}$, and $y=0^{\prime} \mid$ for $i \neq j$. Let $z=0^{i}$.

- tran $\times z=0^{i} 10^{i} \in L$
- but $y z=0^{j} 10^{i} \notin L$

So $z$ is a distinguishing suffix for $x, y$.
So $F$ is a fooling set for $L$.
Because $F$ is infinite, $L$ is not regular. could I have used

$$
\begin{gathered}
F=\left\{0^{n}: n \geq 0\right\}=0^{*} \\
x=0^{i}, y=0^{i} \quad z=10^{i} \\
l=0^{*}=\left\{0^{n}: n \geq 0\right\} \text { regular or no? }
\end{gathered}
$$



Running our example NFA on the input string 01101001.

