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Abstract. Minimum flow decomposition (MFD) — the problem of finding a minimum set of paths
that perfectly decomposes a flow — is a classical problem in Computer Science, and variants of it are
powerful models in multiassembly problems in Bioinformatics (e.g. RNA assembly). However, because
this problem and its variants are NP-hard, practical multiassembly tools either use heuristics or solve
simpler, polynomial-time solvable versions of the problem, which may yield solutions that are not mini-
mal or do not perfectly decompose the flow. Many RNA assemblers also use integer linear programming
(ILP) formulations of such practical variants, having the major limitation they need to encode all the
potentially exponentially many solution paths. Moreover, the only exact solver for MFD does not scale
to large instances, and cannot be efficiently generalized to practical MFD variants.

In this work, we provide the first practical ILP formulation for MFD (and thus the first fast
and exact solver for MFD), based on encoding all of the exponentially many solution paths using only
a quadratic number of variables. On both simulated and real flow graphs, our approach solves any
instance in under 13 seconds. We also show that our ILP formulation can be easily and efficiently
adapted for many practical variants, such as incorporating longer or paired-end reads, or minimizing
flow errors.

We hope that our results can remove the current tradeoff between the complexity of a multiassem-
bly model and its tractability, and can lie at the core of future practical RNA assembly tools. Our
implementations are freely available at github.com/algbio/MFD-ILP.
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1 Introduction

Flow decomposition (FD), the problem of decomposing a network flow into a set of source-to-sink paths
and associated weights that perfectly explain the flow values on the edges, is a classical and well-studied
concept in Computer Science. For example, it is a standard result that any flow in a directed acyclic graph
(DAG) with m edges can be decomposed into at most m weighted paths (see, e.g., [1]). However, finding
an FD with a minimum number of paths (MFD) is NP-hard [53], even on DAGs. This result was later
strengthened by [16] who proved that MFD is hard to approximate (i.e., there is some ε > 0 such that
MFD cannot be approximated to within a (1 + ε) factor, unless P=NP). More recent work has shown that
the problem is FPT in the size of the minimum decomposition [22], and that it can be approximated with
an exponential factor [33]. It is also possible to decompose all but a ε-fraction of the flow within a O(1/ε)
factor of the optimal number of paths [16]. Heuristic approaches to the problem have also been developed,
particularly greedy methods based on choosing the widest or longest paths [53], which can be improved by
making iterative modifications to the flow graph before finding a greedy decomposition [45]. But despite this
history of work on algorithms for MFD, an exact solver that is fast for instances with large optimal solutions
or large flow values remains elusive.

FD is also a key step in numerous applications. For example, some network routing problems
(e.g. [17,9,16,33]) and transportation problems (e.g. [35,36]) require FDs that are optimal with respect
to various measures. MFDs in particular are used to reconstruct biological sequences such as RNA tran-
scripts [38,50,11,5,49,59], and viral quasispecies [4]. However, because MFD is NP-hard, all of these tools in
fact use heuristics or solve some simpler version of the problem ignoring some information that is available
from the sequencing process, resulting in tools that may not reconstruct the correct sequence, even if no
other errors are present. More broadly, it has been noted [34] that the lack of exact solvers for many of the
sub-problems involved in DNA sequencing has led to heuristic and ad hoc tools with no provable guarantees
on the quality of solutions. Additionally, some authors [5,7] have noted that there is a tradeoff between
the complexity of the model for RNA assembly (i.e., how much of the true possible solution space that it
supports) and its tractability. But if a fast exact solver for MFD exists, this tradeoff may not be necessary.

1.1 Minimum Flow Decomposition in Multiassembly

The main bioinformatics motivation for this paper is multiassembly [61]. In this problem, we seek to re-
construct multiple genomic sequences from mixed samples using short substrings (called reads) generated
cheaply and accurately from next-generation sequencing technology. The two major multiassembly problems
are RNA assembly and viral quasispecies assembly, which we describe in more detail below.

One mechanism by which complex organisms create a vast array of proteins is alternative splicing of
gene sequences, where multiple different RNA transcripts (that are then used to produce different proteins)
can be created from the same gene [46]. In humans, over 90% of genes are believed to produce multiple
transcripts [57]. Reconstructing the specific RNA transcripts has proved essential in characterizing gene
regulation and function, and in studying development and diseases, including cancer; see, e.g., [21,43]. A
second multiassembly problem is the reconstruction of viral quasispecies, for example, the different HIV or
hepatitis strains present in a single patient sequencing sample, or the different SARS-CoV-2 strains present
in a sewage water sample. Because viruses evolve quickly, there can be many distinct strains present at one
time, and this diversity can be an important factor in the success or effect of the virus [54].

While the biological realities underlying the different multiassembly problems may yield some differences
in how the problems can be solved, at their heart many approaches contain the algorithmic step of decom-
posing a network flow into weighted paths. The basic setup and approach for multiassembly is as follows.
Given a sample of unknown sequences, each with some unknown abundance (for example, a set of RNA
transcripts or virus strains), all sequences are multiplied and then broken into fragments that can be read by
next-generation sequencers to produce millions of sequence reads ranging from hundreds of tens of thousands
DNA characters in length. Many approaches are reference-based (e.g., [50,52,32,38,23,5,26] for RNA assem-
bly and [62,51] for viral quasispecies assembly), meaning that they use a previously-constructed reference
genome to guide the assembly process. These approaches construct a graph using the sequences contained
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in the reads where nodes are strings, edges represent overlaps, and weights on edges give the counts of reads
that support each overlap. Because a reference is used, these graphs are always DAGs. In the non-reference
case (called de novo), graphs may have cycles; we address this further at the end of the paper. If errors are
minimal, the weights on the edges should form a flow on the network, and the underlying sequences and
their abundances must be some decomposition of the flow into weighted paths. For RNA assembly, recent
work [22,60] has confirmed the common assertion (e.g., by [50,44,23,31,64,28,30]) that the true transcripts
and abundances should be minimum flow decomposition. No such study has been done for viral quasispecies
assembly, but existing tools seek minimum-sized decompositions [4,58]. However, while the abovementioned
tools seek minimum-sized flow decompositions, since MFD is NP-hard, they in fact compute decompositions
that are not guaranteed to be minimum (and thus may not give the correct assembly, even when no other
errors are present).

1.2 Limitations of Current ILP Solutions

One promising direction for fast exact solvers for MFD is integer linear programming (ILP). Existing ILP
solvers like Gurobi [13] and CPLEX [47] incorporate optimizations that allow for fast runtimes in practice
for problems that should be hard in general (see also [14] for various applications of ILP in Bioinformatics).
Indeed, many existing multiassembly tools do use ILP to solve MFD as one step in their process. The basic
idea behind these existing formulations is to consider some set of source-to-sink paths through the graph
and assign each a binary variable indicating whether or not it is selected in the optimal solution, along with
constraints to fully encode the FD problem (i.e. that the selected set of paths—with the weights derived
for them by the ILP—form an FD) and to model further practical aspects of the specific multiassembly
problem. However, the number of paths in a DAG is exponential, meaning that if the tools enumerate all
paths (and thus can be guaranteed to find the true optimal solution) they are impractical for larger instances
(e.g., Toboggan [22]). The most common strategy is to pre-select some set of paths, either for all instances
(e.g., vg-flow [4] and CLIIQ [28]), or only when the input is large (e.g., MultiTrans [64] and SSP [40]). But
by pre-selecting paths, these formulations may not find the optimal MFD solution for the instance.

While the conference version of this paper was in print, the recent transcript assembly method JUMPER [41]
was brought to our attention. JUMPER appears to be, to our knowledge, the only prior method incorporat-
ing the search for paths in a DAG into an ILP. However, their solution is slightly less general, since it works
only for DAGs having a Hamiltonian path. If Hamiltonicity holds, any source-to-sink path can be encoded
as a subset of edges that do not pairwise overlap in the Hamiltonian path (i.e., the tail of an edge does
not appear before the head of another edge in the Hamiltonian path). As such, to avoid such pairwise edge
overlaps they require a number of constraints that is quadratic in the size of the graph.

1.3 Our Contributions

We give a new ILP approach to the MFD problem on DAGs, and we show that it can be used on both
simulated and real RNA assembly graphs under conditions used in many reference-based multiassembly
tools. Our approach is:

Fast and exact: We show in Section 3.1 that it is not necessary to enumerate all paths in order to encode
them in an ILP. The key idea is that any path must have a conserved (unit) flow from its start to its end,
and that this concept can be encoded using only a number of variables and constraints that is linear in the
size of the graph (rather than exponential, as is the case when the model enumerates all possible paths).
This is a standard integer programming method for expressing paths in DAGs, used for example in [48]. An
implementation of our ILP formulation using CPLEX finds optimal flow decomposition solutions on RNA
assembly graphs (simulated and assembled from real reads) in under 13 seconds on average, over all the
datasets tested. This is several times faster than the state-of-the-art MFD solver Toboggan [22], depending
on the dataset. While heuristic solvers such as Catfish [45] or CoasterHeuristic [60] finish withing a few
seconds, we show that they do not provide optimum solutions. Another benefit of our ILP solutions is that
all optimum solutions can be reported by the ILP solver, thus potentially helping in “identifying” the correct
RNA multiassembly solution (a practical issue acknowledged by e.g. [29,19]).
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Flexible: In practice, many multiassembly tools in fact solve variants of MFD. For example, many tools
account for paired-end reads by requiring that they be included in the same path. Another common strategy
is to incorporate longer reads as subpath constraints or phasing paths [38,44,60] which again must be covered
by some predicted transcript (i.e. flow path). In Section 3.2, we give additional constraints that are expressive
enough to not only encode paired-end reads and subpath constraints, but also any generic set of edges that
must be covered by a single path (e.g., as when modelling the recent Smart-seq3 protocol producing RNA
multi-end reads [15]). Additionally, due to sequencing or read mapping errors, the weights on edges may
not be a flow (i.e. flow conservation might not hold). One approach in this case is to consider intervals
of edge weights instead, as in [40,59]. We give a formulation to handle this approach in Section 3.3. Our
implementation solves subpath constraint instances in similar time to standard instances, while the existing
exact solver could not complete on many instances in under 60 seconds. Moreover, while the existing interval
heuristic is fast, it finds decompositions that are far from optimum. While all these additional constraints
are naturally expressed in ILP (further underlining the flexibility of our approach), the novelty here is their
integration with the ILP encoding of all possible paths in the DAG from Section 3.1.

In Appendix B, we give MFD formulations dealing with the total error over all edges. We can consider an
upper bound on the total error, or seek a minimum decomposition that also achieves the minimum error, as
studied in [49] and used in RNA assemblers such as [26,24,5,50]. Finally, we note that our formulation could
also be used to find decompositions for any of the above variants using a fixed, or upper bounded, number
of paths, which is useful if further information is available.

2 Preliminaries

Given a graph G = (V,E), with vertex set V and edge set E ⊆ V ×V , we say that s ∈ V is a source if s has
no in-coming edges. Analogously, we say that t ∈ V is a sink if t has no out-going edges. Moreover, we say
that G is a directed acyclic graph (DAG) if G contains no directed cycles.

Definition 1 (Flow network). A tuple G = (V,E, f) is said to be a flow network if (V,E) is a DAG with
unique source s and unique sink t, where for every edge (u, v) ∈ E we have an associated positive integer
flow value fuv, satisfying conservation of flow for every v ∈ V \ {s, t}, namely:∑

(u,v)∈E

fuv =
∑

(v,w)∈E

fvw. (1)

Given a flow network, a flow decomposition for it consists of a set of source-to-sink flow paths, and
associated weights strictly greater than 0, such that the flow value of each edge equals the sum of the weights
of the paths passing through that edge. In other words, the superposition of the weighted paths of the flow
decomposition equals the flow of the network (see also Fig. 1). Formally:

Definition 2 (k-Flow Decomposition). A k-flow decomposition (P, w) for a flow network G = (V,E, f)
is a set of k s-t flow paths P = (P1, . . . , Pk) and associated weights w = (w1, . . . , wk), with each wi ∈ Z+,
such that for each edge (u, v) ∈ E it holds that: ∑

i∈{1,...,k} s.t.
(u,v)∈Pi

wi = fuv. (2)

Our above definitions assume integer flow values in the network and integer weights of the flow paths, as is
natural since these values count the number of sequenced reads traversing the edges, and are also consistent
with previous works such as [22]. However, in practical applications, one could have both fractional flow
values and flow path weights, as in e.g., [38]. Note also that the integer and fractional decompositions to
the problem may differ. For example, [53] observes that are integer flow networks which admit a k-flow
decomposition with fractional weights, but no k′-flow decomposition with integer weights, for any k′ ≤ k.
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(a) A flow network.
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(b) A 3-flow decomposition into
paths of weights (4, 2, 7).
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(c) A 4-flow decomposition into
paths of weights (4, 2, 6, 1).

Fig. 1: Example of a flow network and of two flow decompositions of it.

3 ILP Formulations

3.1 Minimum Flow Decomposition

In this section we consider the following problem of finding a minimum-size flow decomposition.

Problem 1 (Minimum flow decomposition (MFD)). Given a flow network G = (V,E, f), the minimum flow
decomposition (MFD) problem is to find a flow decomposition (P, w) such that |P| is minimized.

Our solution for Problem MFD is based on an ILP formulation of a flow decomposition with a given
number k of paths (a k-flow decomposition). Using this, one can easily solve the MFD problem by finding
smallest k such that the flow network admits a k-flow decomposition. Notice that any DAG admits a flow
decomposition of size at most |E|, see e.g., [1] (since one can iteratively take the edge with smallest flow value
and create an s-t path of weight equaling this flow value). Moreover, if assuming integer weights, another
trivial upper bound on the size of any flow decomposition is |f |, namely the flow exiting s, and there is always
a flow decomposition with |f | paths of weight one. Thus, if there is a k-flow decomposition, there is also a
k′-flow decomposition, for all k < k′ ≤ min{|E|, |f |} (just duplicate a path of weight greater than one, and
move weight one from the old copy to the new one). This shows that when searching for the smaller k such
that the graph admits a k-flow decomposition we can either do a linear scan in increasing order, or binary
search. Since k is usually small in our applications, we just do a linear scan. As mentioned at the end of
Section 2, the problem can also be defined as allowing real flow values and/or weights. Our ILP formulation
can also handle this variant by just changing the domain of the corresponding variables (in which case we
will obtain a Mixed Integer Linear Program (MILP))3.

We start by recalling the standard formulation of a path used for example by [48] for the shortest path
problem. If an s-t path repeats no edge (which is always the case if the graph is a DAG) then we can interpret
it simply as the set of edges belonging to the path. If we assign value 1 for each edge on the path, and value
0 for each edge not on the path, then these binary values correspond to a conceptual flow in the graph (V,E)
(different from the input flow). Moreover, this conceptual flow induced by the (single) path is such that the
flow out-going from s is 1 and the flow in-coming to t is 1. It can be easily checked (cf. e.g., [48]) that if the
graph is a DAG, then this is a precise characterization of an s-t path.

3 We note that this version has one subtlety to address: as discussed below, it is necessary to linearize products in the
formulation to make it a true ILP (or MILP, in this case). To linearize products of the real variables, it is required
that the real variables have closed bounds. However, if we solve k-FD for increasing k (and not binary search), we
can use wi ≥ 0, since no weight 0 path will be included. This introduces the limitation that this formulation could
not be used to solve flow decomposition for a fixed k, but only if k is an upper bound on the solution size.
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Thus, for every path i ∈ {1, . . . , k}, and every edge (u, v) ∈ E, we can introduce a binary variable xuvi
indicating whether the edge (u, v) belongs to the i-th path. The above characterization of a path can be
expressed by the following equations (see also Fig. 2):

∑
(s,v)∈E

xsvi = 1, ∀i ∈ {1, . . . , k}, (3a)

∑
(u,t)∈E

xuti = 1, ∀i ∈ {1, . . . , k}, (3b)

∑
(u,v)∈E

xuvi −
∑

(v,w)∈E

xvwi = 0, ∀i ∈ {1, . . . , k},∀v ∈ V \ {s, t}. (3c)
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Fig. 2: Example of the edge variables of the ith path, satisfying Eqs. (3a) to (3c).

Having expressed a set of k s-t paths with already known ILP constraints, we need to introduce the new
constraints tailored for the k-flow decomposition problem. That is, we need to state that the superposition of
their weights equals the given flow in the network (2). Thus, for each path i we introduce a positive integer
variable wi corresponding to its weight, and add the constraint:

∑
i∈{1,...,k}

xuviwi = fuv, ∀(u, v) ∈ E. (4)

To get the ILP formulation, it remains to linearize equation (4), which is nonlinear because it involves
a product of two decision variables. Let us remark that even though non-linear programming solvers exist
(such as IPOPT [56]), they are inefficient, do not scale to a large number of variables and are non-professional
grade. Instead, having an ILP formulation means that we can make use of popular solvers such as CPLEX
[47] and Gurobi [6].

Since the decision variables involved in the product in Eq. (4) are bounded (xuvi is binary and wi is at
most the largest flow value of any edge), this equation can be linearized by standard techniques as in e.g., [10]
and [27]. For that, we introduce the integer decision variable πuvi which represents the product between wi

and xuvi, and a constant w that is a large enough upper bound for any variable wi (e.g., the largest flow
value of any edge). As such, Eq. (4) can be replaced by the following equations:

fuv =
∑

i∈{1,...,k}

πuvi, ∀(u, v) ∈ E, (5a)

πuvi ≤ wxuvi, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (5b)

πuvi ≤ wi, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (5c)

πuvi ≥ wi − (1− xuvi)w, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}. (5d)
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In these constraints, Eq. (5b) ensures that πuvi is 0 if xuvi is 0, and Eqs. (5c) and (5d) ensure that πuvi
is wi if xuvi is 1. For completeness, see Appendix A for the full ILP formulation for k-Flow Decomposition.

3.2 Subpath Constraints

In this section we consider the flow decomposition variant where we are also given a set of subpath constraints
that must appear (as a subpath of some path) in any flow decomposition. Among all such decompositions we
must find of one with the minimum number of paths. In multiassembly, subpath constraints represent longer
reads that span three or more vertices; they are used in popular RNA assembly tools such as StringTie [23] and
Scallop [44] and their usefulness for that problem was confirmed empirically in [60]. Such subpath constraints
can also naturally model long RNA-seq reads, and we note that, as several authors also acknowledge [63,2,55],
long reads do not render the RNA assembly problem obsolete, because they do not always capture full-length
transcripts (due to the conversion from RNA to cDNA), and do not fully capture low-expressed transcripts.

Formally, the problem can be defined as follows (see also Fig. 3a).

Definition 3 (Flow decomposition with subpath constraints). Let G = (V,E, f) be a flow network.
Subpath constraints are defined to be a set of simple paths R = {R1, . . . , R`} in G (not necessarily s-t paths).
A flow decomposition (P, w) satisfies the subpath constraints if and only if

∀Rj ∈ R,∃Pi ∈ P such that Rj is a subpath of Pi. (6)

Problem 2 (Minimum flow decomposition with subpath constraints (MFDSC)). Given a flow network G =
(V,E, f) and subpath constraints R, the minimum flow decomposition with subpath constraints problem is to
determine if there exists, and if so, find a flow decomposition (P, w) satisfying (6) such that |P| is minimized.
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(a) A flow network with a single subpath con-
straint R1 = (a, c, t).
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(b) Constraint R1 is satisfied because for the ith

path we can set ri1 = 1 (and satisfy Eq. (7b))
so that xaci + xcti ≥ 2ri1 holds (and satisfy
Eq. (7a)).

Fig. 3: The flow network from Fig. 1 with a subpath constraint (which is satisfied by the 4-flow decomposition
from Fig. 1c, but not by the one in Fig. 1b), and example of a path satisfying the constraint.

We can expand the previous ILP formulation for k-Flow Decomposition to incorporate the conditions
necessary to represent the subpath constraints. Let R be the set of simple paths that are required to be part
of at least one path of the flow decomposition. For each Rj ∈ R, we introduce an additional binary variable
rij denoting the presence of the subpath Rj in the ith path. It clearly holds that rij = 1 if and only if for
each edge (u, v) in Rj we have that xuvi = 1. Let |Rj | denote the length (i.e., number of edges) of subpath
constraint Rj , which is a parameter (i.e. constant). The following inequalities guarantee that each subpath
constraint is satisfied by the flow decomposition (see also Fig. 3b):

∑
(u,v)∈Rj

xuvi ≥ |Rj |rij , ∀i ∈ {1, . . . , k},∀Rj ∈ R, (7a)

∑
i∈{1,...,k}

rij ≥ 1, ∀Rj ∈ R. (7b)
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Remark 1. In the above ILP formulation we do not use the fact that the edges of subpath constraint Rj are
consecutive (i.e., form a path). Thus, the same formulation applies also if the constraint consists of a pair of
edge-disjoint paths that must all occur in the same transcript, modelling paired-end Illumina reads, or if it
consists of a set of edge-disjoint paths (or simply of a set of edges), modelling multi-end Smart-seq3 RNA
reads [15]. More specifically, Eq. (7a) simply characterizes when all edges of constraint Rj are covered by
some flow path i, and Eq. (7b) requires that at least one flow path satisfies the constraint Rj .

Remark 2. While for MFD we could modify the ILP to allow also real positive path weights by setting their
lower bound to be 0 (because we solve MFD by increasing k, as discussed at the beginning of Section 3.1),
this is no longer possible here, since the resulting model could allow as feasible optimum solution a set of k
paths decomposing the flow, plus one 0-weight path added just to satisfy some subpath constraints.

3.3 Inexact Flow

Another variant of the flow decomposition problem is when the given values on the edges of the flow network
do not satisfy the conservation of flow property. Instead, they are required to belong to a given interval, for
each edge. Thus, we are looking for an inexact flow decomposition, namely one such that the superposition
of its weights belongs to the given interval of each edge. This model was studied in [59] and is used in the
practical RNA assembler SSP [40], which seeks a set of transcripts explaining the read coverage within some
user-defined error tolerance (i.e., interval around the observed weights) on all edges.

The problem is formally stated as follows.

Definition 4 (Inexact flow network). A tuple G = (V,E, f, f) is said to be an inexact flow network if
(V,E) is a DAG with unique source s and unique sink t, where for every edge (u, v) ∈ E we have associated
two positive integer values fuv and fuv, satisfying fuv ≤ fuv.

Problem 3 (Minimum inexact flow decomposition (MIFD) [59]). Given an inexact flow network G =
(V,E, f, f) the minimum inexact flow decomposition problem is to determine if there exists, and if so, find a
minimum-size set of s-t paths P = (P1, . . . , Pk) and associated weights w = (w1, . . . , wk) with wi ∈ Z+ such
that for each edge (u, v) ∈ E it holds that:

fuv ≤
∑

i∈{1,...,k} s.t.
(u,v)∈Pi

wi ≤ fuv. (8)

In this variant, the same formulation as presented k-Flow Decomposition can be expanded to accom-
modate the inexact flow component. By simply replacing the flow conservation expressed in Eq. (4) (in the
linearized form in Eq. (5a)), with the following two constraints:

fuv ≤
∑

i∈{1,...,k}

πuvi ≤ fuv, ∀(u, v) ∈ E. (9a)

Remark 3. Notice that Eq. (9a) can be combined with Eqs. (7a) and (7b) to obtain a solution if one needs to
solve an inexact flow decomposition with subpath constraints problem, further underscoring the versatility
of the ILP solution in handling various practical variants of the flow decomposition problem.

4 Experiments

4.1 Experiment Design

Solvers. We denote by StandardILP, SubpathConstraintsILP, and InexactFlowILP our ILP formulations for
Problems 1 (MFD), 2 (MFDSC) and 3 (MIFD), respectively. We implemented these using the Cplex Python
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API under default settings. We compare StandardILP with Toboggan, the implementation by [22] for their
exact FPT algorithm for MFD, and with Catfish, the implementation by [45] of their heuristic algorithm for
MFD. We compare SubpathConstraintsILP with Coaster, the implementation by [60] for MFDSC, which is an
exact FPT algorithm extending Toboggan, and also with CoasterHeuristic, which is a heuristic for MFDSC
also by [60]. We compare InexactFlowILP with IFDSolver, which is an implementation of a heuristic algorithm
for MIFD by [59]. Given the size of the datasets, we set a time limit for each graph, as also done by [22,60]
(we use 1 minute in all cases, except that we also include a run of Toboggan with a 5 minute time limit).
The runtimes of our ILP implementations include the linear scan in increasing order to find the smallest k
for which there is a k-flow decomposition.

Datasets. To test the performance of the solvers under a range of biologically-occurring graph topologies
and flows weights, we used three human transcriptomic datasets containing a perfect (i.e., the edge weights
satisfy conservation of flow) splice graph for each gene of the human genome. The first dataset, produced
by the authors of [44] and also used in a number of flow decomposition benchmarking studies [22,60], was
built using publicly available RNA transcripts from the Sequence Read Archive with quantification using the
tool Salmon [37]. We use one of the larger transcriptomes4 and call this dataset SRR020730-Salmon. We
also produce perfect splice graphs by running HiSat2 [20] with the provided GRCh38 reference index and
then popular RNA assembly tool StringTie [23] on real RNA reads from SRR307903, and superimposing
the resulting transcripts and abundances (after rounding abundances to the nearest integer). We call this
dataset SRR307903-StringTie. Finally, we create another dataset by directly simulating expression values
for all reference transcripts of all genes in the reference genome GRCh.104 homo sapiens by sampling
weights from the lognormal distribution with mean −4 and variance 4, as in the default setting of the
RNASeqReadSimulator tool [25]. We multiply the simulated values by 1000 and round to the nearest integer.
We call this dataset Reference-Sim. For both the Reference-Sim and SRR307903-StringTie datasets,
we use only genes on the positive strand.

For the subpath constraint experiments, we simulate four subpath constraints in each graph as in [60].
For four of the groundtruth paths, we take the prefix of the path that includes three nontrivial junctions
(equivalent to three edges in the contracted graph described in [22, Lemma 13]) as a subpath constraint. If
a splice graph has fewer than four groundtruth paths, it is excluded from this experiment.

For the inexact flow experiments, we simulate interval flows as follows, similar to what was done in [59].
For each true edge flow fuv, we independently sample a perturbed flow f ′uv fromN (fuv, (εfuv)2), the Gaussian
distribution with mean fuv and standard deviation εfuv For this experiment we fixed ε = 0.05. We then
create intervals as [0.9f ′uv, 1.1f

′
uv] with values rounded to the nearest integer, corresponding to a 10% error

tolerance from the observed values. As described in [59], it is possible that an inexact flow decomposition
instance created in this way is infeasible; if an infeasible instance is created, we re-create it until a feasible
instance is found.

From all datasets, the trivial graphs made up of a single path (i.e. admitting a trivial flow decomposition)
are excluded.

Metrics. For each dataset and each FD variant, we report min k, the number of paths in a minimum flow
decomposition for each problem variant; Amount, namely the number of graphs having that specifc value
of min k; Avg., the average time (in seconds) for each instance solved within the time limit; Σ, the total
time (in seconds) required to solve all instances (this included also the running time of the instances that did
not finish within the time limit); Solved, the percentage all instances solved within the time limit; Diff.,
the average difference between the number of paths obtained with a heuristic algorithm and the optimum
one.

4 The full dataset from [45] is available at https://zenodo.org/record/1460998. We use the file rnaseq/sparse_

quant_SRR020730.graph.
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Table 1: Results for Problem MFD.

StandardILP Toboggan (1 min) Toboggan (5 min) Catfish

min k Amount Avg. Σ Solved Avg. Σ Solved Avg. Σ Solved Avg. Σ Solved Diff.

S
R

R
0
2
0
7
3
0

S
a
lm

o
n

2-5 34371 0.091 3127 100 0.002 68 100 0.002 68 100 0.001 34 100 0.00
6-10 2291 0.204 467 100 0.023 52 100 0.024 54 100 0.031 71 100 0.00

11-15 95 4.692 445 100 2.361 225 100 2.612 248 100 3.582 340 100 2.85
16-20 16 5.891 94 100 10.453 287 86 22.531 671 93 8.451 135 100 3.75

21-max 7 10.222 71 100 16.564 281 50 33.221 643 78 11.621 81 100 4.56

R
e
fe

re
n

c
e

S
im

2-5 14513 0.089 1303 100 0.002 29 100 0.003 43 100 0.058 841 100 0.00
6-10 1506 0.352 530 100 0.124 186 100 0.123 186 100 0.124 186 100 0.00

11-15 261 4.564 1191 100 24.132 4365 75 29.312 6575 92 1.299 339 100 2.79
16-20 63 10.332 650 100 36.344 1753 65 46.444 3759 83 10.45 658 100 3.75

21-max 41 12.833 526 100 54.732 1553 51 57.672 4268 73 31.65 1298 100 4.56

S
R

R
3
0
7
9
0

S
tr

in
g
T

ie 2-5 7335 0.122 894 100 0.022 161 100 0.022 162 100 0.029 212 100 0.00
6-10 768 1.051 807 100 1.191 914 100 1.191 915 100 0.172 132 100 0.00

11-15 133 4.855 645 100 5.063 2535 71 10.343 5998 88 3.871 514 100 2.53
16-20 55 6.895 378 100 12.451 1764 57 21.561 5167 74 5.452 299 100 3.75

21-max 37 10.512 388 100 20.562 1433 51 32.211 4362 68 9.651 357 100 4.56

4.2 Results

The results for Problem MFD are shown in Table 1. For all three datasets, the average time and the total
time of Toboggan and Catfish outperform StandardILP for less complex genes, where the number of flow-paths
is at most 10 or 15. However, as the genes becomes more complex (larger optimum flow decompositions),
StandardILP is capable of solving all instances within an average of 10 seconds, while Toboggan and Catfish
require on average 16 and 11 seconds for the solved instances, respectively. In addition, Toboggan does not
solve all instances even within the 5 minute time limit. Recall also that Catfish is a heuristic, and thus it
does not always return optimum solutions (see column Diff.).

Among the different datasets, SRR020730-Salmon has fewer complex genes and most instances are
solved more easily. However for SRR307903-StringTie (constructed from real RNA reads) and Reference-
Sim datasets, there is a larger amount of complex genes and consequently fewer instances can be solved by
Toboggan and Catfish, while StandardILP remains efficient and scalable. In these results, although StandardILP
does not perform as fast as on SRR020730-Salmon, its runtime is still competitive, it can be scaled
to graphs with larger k without compromising its efficiency. On the other hand, Toboggan’s runtime is
exponential in the size of the optimum decomposition, which hinders its usage on larger instances. Moreover,
notice that in some applications (e.g. cancer transcriptomics [18]) the graphs of interest do have a large
number of RNA transcripts because of the genetic mechanism driving the disease. Hence, in such applications
the need to find a flow decomposition is even greater for large k.

Lastly, one of the key steps in the Toboggan implementation is a reduction of the graph (to simplify nodes
with in-degree or out-degree equal to one, see [22]), which is a key insight behind its efficiency. However,
this observation is highly tailored to the MFD problem, and cannot be easily extended to other FD variants
(in fact, it is not used by real RNA assemblers).

The results for Problem MFDSC are shown in Table 2. For all three datasets, SubpathConstraintsILP
is capable of solving instances of any size within a few seconds. As an ILP formulation, the addition of
the constraints corresponding to the subpath constraints do not hinder its scalability or efficiency. On the
other hand, Coaster is both slow on small instances, and does not solve large instances. This shows that the
Toboggan implementation is optimized to use many properties of the standard MFD problem, that are not
generalizable to variants of it of practical applicability, such as Problem MFDSC. Moreover, similarly to the
Catfish heuristic, CoasterHeuristic does not return optimum solutions.

The results for Problem MIFD are shown in Table 3. For all three datasets, both formulations run on
any instance in a small amount of time. In fact, InexactFlowILP generally has the same running time as
StandardILP, which further underscores the flexibility and efficiency of our formulations. However, IFDSolver

9



Table 2: Results for Problem MFDSC.

SubpathConstraintsILP Coaster CoasterHeuristic

min k Amount Avg. Σ Solved Avg. Σ Solved Avg. Σ Solved Diff.

S
R

R
0
2
0
7
3
0

S
a
lm

o
n

4-10 5691 0.192 1082 100 30.123 176823 85 0.005 28.5 100 2.14
11-15 95 1.475 139 100 45.121 4367 44 0.014 1.33 100 3.04
16-20 16 3.461 55 100 60.000 960 0 0.025 0.04 100 3.91

21-max 8 10.452 83 100 60.000 480 0 0.067 0.536 100 4.51

R
e
fe

re
n

c
e

S
im

4-10 6512 0.18 1167 100 37.132 243963 84 0.006 39.1 100 3.13
11-15 260 1.10 279 100 46.211 12097 14 0.031 1.12 100 4.12
16-20 78 2.58 203 100 60.000 4680 0 0.041 0.32 100 5.12

21-max 40 11.51 460 100 60.000 3000 0 0.064 2.54 100 8.13

S
R

R
3
0
7
9
0

S
tr

in
g
T

ie 4-10 864 0.181 329 100 28.241 244001 86 0.006 5.18 100 2.98
11-15 104 1.124 148 100 45.142 4693 25 0.032 0.32 100 3.07
16-20 70 2.578 250 100 60.000 4200 0 0.083 0.58 100 4.14

21-max 27 11.51 391 100 60.000 1620 0 0.091 2.42 100 5.78

is a heuristic solver, having a significant difference with respect to the size of a minimum decomposition even
for small k.

Table 3: Results for Problem MIFD.

InexactFlowILP IFDSolver

min k Amount Avg. Σ Solved Avg. Σ Solved Diff.

S
R

R
0
2
0
7
3
0

S
a
lm

o
n

2-5 34371 0.087 2990 100 0.001 34 100 2.12
6-10 2291 0.131 300 100 0.025 57 100 2.41

11-15 95 4.784 454 100 0.134 12 100 3.51
16-20 16 5.784 91 100 0.618 10 100 4.13

21-max 7 10.16 70 100 1.124 8 100 5.17

R
e
fe

re
n

c
e

S
im

2-5 14513 0.153 2165 100 0.003 44 100 2.56
6-10 1506 0.109 164 100 0.052 78 100 2.78

11-15 261 3.132 817 100 0.254 66 100 3.64
16-20 63 5.791 364 100 0.783 50 100 3.34

21-max 41 11.56 473 100 1.341 55 100 3.56

S
R

R
3
0
7
9
0

S
tr

in
g
T

ie 2-5 7335 0.104 762 100 0.001 7 100 2.34
6-10 768 0.219 168 100 0.047 36 100 2.41

11-15 133 2.891 384 100 0.345 45 100 3.40
16-20 55 6.183 340 100 0.871 48 100 3.21

21-max 37 13.214 488 100 1.091 40 100 3.78

5 Conclusions and Future Work

Flow decomposition is a key problem in Computer Science, with applications in various fields, including the
major multiassembly problems from Bioinformatics. Despite this, the only exact solution for MFD is the
FPT algorithm of [22], which does not scale to large values of k, and cannot be efficiently extended to model
practical features of real data (such as long reads, or inexact flows). In fact, a large number of practical
RNA assemblers use an ILP formulation at their core, thanks to their flexibility in modeling various aspects
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of real data. However, such formulations are based either on an impractical exhaustive enumeration of all
possible s-t paths, or on a greedy heuristic to select a smaller set of candidate s-t paths that might be part
of an optimum solution.

In this paper we show an efficient quadratic-size ILP for MFD and variants, avoiding for the first time the
current limitation of (exhaustively) enumerating candidate s-t paths. We also show that many constraints
inside state-of-the-art RNA assemblers can be easily modeled on top of our basic ILP (i.e. subpath constraints,
inexact and imperfect flows). Further flexibility also comes from the fact that all our ILPs are based on
modeling a specific type of flow decomposition with a given, or upper bounded number k of paths (thus,
they do not need to solve the minimum version of the problem). On both simulated and real datasets, we
show that our ILP formulations finish within 13 seconds on any instance, and within a few seconds on most
instances.

On the practical side, we hope that our flexible ILP formulations can lie at the core of future reference-
based RNA assemblers employing exact solutions. Thus, the current tradeoff between the complexity of the
model and its tractability might not be necessary anymore. On the theoretical side, our ILP formulation
represents the first exact solver for MFD scaling to large values of k, and it could be a reference when
e.g. benchmarking various other heuristic or approximation algorithms.

Given the maturity of ILP solvers and Toboggan’s intrinsic exponential dependence on k, it is not surpris-
ing that an ILP for MFD using a quadratic number of variables performs significantly better than Toboggan
for larger k values. However, since for small k values our ILP formulations are still slower, as future work it
would be interesting to further devise more efficient MFD solvers (e.g., as a start, run Toboggan when the
instance is detected as being “small enough”).

It would also be interesting to extend our ILP formulations to flow networks with cycles. While in this
work we focus on reference-based approaches for multiassembly, de novo approaches (e.g., [12,42] for RNA
assembly and [3,4,39,8] for viral quasispecies assembly) may yield graphs with cycles. In this context, any
flow in such a network can be decomposed into at most |E| weights s-t paths and cycles.
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51. Töpfer, A., Zagordi, O., Prabhakaran, S., Roth, V., Halperin, E., Beerenwinkel, N.: Probabilistic inference of
viral quasispecies subject to recombination. Journal of Computational Biology 20(2), 113–123 (2013)

52. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.J., Salzberg, S.L., Wold, B.J.,
Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nature biotechnology 28(5), 511–515 (2010)

53. Vatinlen, B., Chauvet, F., Chrétienne, P., Mahey, P.: Simple bounds and greedy algorithms for decom-
posing a flow into a minimal set of paths. European Journal of Operational Research 185(3), 1390–1401
(2008). https://doi.org/https://doi.org/10.1016/j.ejor.2006.05.043, https://www.sciencedirect.com/science/
article/pii/S0377221706006552

54. Vignuzzi, M., Stone, J.K., Arnold, J.J., Cameron, C.E., Andino, R.: Quasispecies diversity determines pathogen-
esis through cooperative interactions in a viral population. Nature 439(7074), 344–348 (2006)

55. Voshall, A., Moriyama, E.N.: Next-generation transcriptome assembly: strategies and performance analysis. Bioin-
formatics in the era of post genomics and big data pp. 15–36 (2018)
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A Full ILP formulation for k-Flow Decomposition

∑
(s,v)∈E

xsvi = 1, ∀i ∈ {1, . . . , k}, (10a)

∑
(u,t)∈E

xuti = 1, ∀i ∈ {1, . . . , k}, (10b)

∑
(u,v)∈E

xuvi −
∑

(v,w)∈E

xvwi = 0, ∀i ∈ {1, . . . , k}, (10c)

fuv =
∑

i∈{1,...,k}

πuvi, ∀(u, v) ∈ E, (10d)

πuvi ≤ wxuvi, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (10e)

πuvi ≤ wi, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (10f)

πuvi ≥ wi − (1− xuvi)w, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (10g)

wi ∈ Z+, ∀i ∈ {1, . . . , k}, (10h)

xuvi ∈ {0, 1}, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (10i)

πuvi ∈ Z+ ∪ {0}, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}. (10j)

Table 4: Notation for k-Flow Decomposition ILP
Headers

xuvi binary variable corresponding to the usage of edge (u, v) ∈ E in flow path i ∈ {1, . . . , k}
wk integer variable corresponding to the weight of flow path i ∈ {1, . . . , k}
πuvi integer variable corresponding to the product of the weight of flow path i ∈ {1, . . . , k} and the usage of edge (u, v) ∈ E in the same flow path
w sufficiently large upper bound for any wi, for all i ∈ {1, . . . , k}

B Imperfect flow

An alternative approach to handle a graph whose weights to not satisfy the flow conservation property flow
consists in directly taking the observed read coverages, and trying to find a set of path whose superposition
best explains the observed coverages under some error model, penalizing the difference between the observed
coverage of an edge and the sum of the weights of the paths going through that edge. This problem has been
formalized in [49] and also proven NP-hard. To formalize this problem, we denote by imperfect flow network
any DAG (V,E) with unique source s and unique sink t, where for every edge we have an associated integer
positive value fuv (not necessarily satisfying the flow conservation property).

A first formulation of such an MFD variant imposes a fixed bound on the total error of all of the edges.

Problem 4 (Minimum imperfect flow decomposition (bounded error)). Given an imperfect flow network
G = (V,E, f), and an error bound B ≥ 0, find (if it exists) a minimum-sized set of s-t paths P = (P1, . . . , Pk)
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and associated weights w = (w1, . . . , wk) with wi ∈ Z+ such that for each edge (u, v) ∈ E∣∣∣∣∣∣∣∣fuv −
∑

i∈{1,...,k} s.t.
(u,v)∈Pi

wi

∣∣∣∣∣∣∣∣ ≤ B. (11)

Notice that Problem 4 is a strict generalization of the MFD problem, which is obtained by taking
B = 0. As done in Section 3.3, we can obtain an ILP for it by extending the ILP formulation for k-Flow
Decomposition to express Eq. (11) by the following two sets of linear equations:

fuv −
∑

i∈{1,...,k}

πuvi ≤ B, ∀(u, v) ∈ E,

fuv −
∑

i∈{1,...,k}

πuvi ≥ −B, ∀(u, v) ∈ E.

This model is for a fixed k value, and a full solution for Problem 4 is obtained by trying all values of k
in increasing order until the ILP formulation admits a solution. Notice that the same upper bound k ≤ |E|,
since any solution to Problem 4 (i.e. any set of weighted s-t paths) induces a flow, which is decomposable
into at most |E| weighted paths.

Another formulation, defined by [49] and at the core of RNA multiassembly tools such as [26,24,5,50],
asks to minimize the total sum of squared errors with a minimum number of paths.

Problem 5 (Minimum imperfect flow decomposition (minimum total error) [49]). Given an imperfect flow
network G = (V,E, f), find a set of s-t paths P = (P1, . . . , Pk) and associated weights w = (w1, . . . , wk),
minimizing

∑
(u,v)∈E

fuv − ∑
i∈{1,...,k} s.t.

(u,v)∈Pi

wi


2

, (12)

and among all such sets of paths, find one with minimum k (i.e. with minimum cardinality).

For a given number k of path, Eq. (12) can be used as an objective function in an Integer Quadratic
Problem (IQP), which can solved by commercial solvers such as CPLEX and Gurobi. The main requirements
is that the objective function is quadratic and convex, such as:

min
∑

(u,v)∈E

fuv − ∑
i∈{1,...,k}

πuvi

2

. (13)

As before, to fully solve Problem 5, one can iterate over k from 1 to |E| (upper bound holding by the
same reasoning as above), and choose the smallest one attaining Eq. (13).
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