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Decidable problems

(Decidable)
Example Problemsin2012-

↳
· searching list , target
output : Whether target in listfencontent
"put sona

a sorted list

· max Flow

input : G = (V , E) , edge capacities
output : bisgest flow respecting
capacities

&
& Minimum flow decomposition
input : acyclic G

= (V , E) , flowf

output : smallest set
of weighted paths

decomposing fAssume· flow decomposition



Goals for the next three lectures

today : intuitive understanding
of1P

next time : formalize

tuesday : algorithms to
solve LPs



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. 



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  Day’s Profit: ?
  



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  Day’s Profit:            10!! + 30!"
  



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  Objective:            10!! + 30!"
  



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  Objective: max 10!! + 30!"
  



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  Objective: max 10!! + 30!"
  Subject to: ?



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  Objective: max 10!! + 30!"
  Subject to: !! ≤ 30
    



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  Objective: max 10!! + 30!"
  Subject to: !! ≤ 30
    !" ≤ 20
    



Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier 
Ripper Carbon. MFC needs to decide how much of each frisbee it should 
make to maximize profits. Suppose:

1. Rippers yield profit of $10 and Ripper Carbons $30. 
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, !! = # of Rippers sold in a day, !" = # of Ripper Carbons sold in a day.
  Objective: max 10!! + 30!"
  Subject to: !! ≤ 30
    !" ≤ 20
    !! + !" ≤ 40



Linear Program (LP)

!! = # of Rippers sold
!" = # of Ripper Carbons
Objective: max10!! + 30!"
Subject to: !! ≤ 30
   !" ≤ 20
   !! + !" ≤ 40
   !!, !" ≥ 0



Linear Program (LP)

Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time 
   (called integer linear program – ILP).!! = # of Rippers sold

!" = # of Ripper Carbons
Objective: max10!! + 30!"
Subject to: !! ≤ 30
   !" ≤ 20
   !! + !" ≤ 40
   !!, !" ≥ 0



Linear Program (LP)

Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time 
   (called integer linear program – ILP).

Objective:
• Can be minimization or maximization.
• Must be linear combinations of variables !! 
 (e.g. ""!" +⋯+ "#!# for constants "!, not "!!"!$).

!! = # of Rippers sold
!" = # of Ripper Carbons
Objective: max10!! + 30!"
Subject to: !! ≤ 30
   !" ≤ 20
   !! + !" ≤ 40
   !!, !" ≥ 0



Linear Program (LP)

Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time 
   (called integer linear program – ILP).

Objective:
• Can be minimization or maximization.
• Must be linear combinations of variables !! 
 (e.g. ""!" +⋯+ "#!# for constants "!, not "!!"!$).

Constraints:
• Can be ≤, ≥, =.
• Must be linear combinations of variables.

!! = # of Rippers sold
!" = # of Ripper Carbons
Objective: max10!! + 30!"
Subject to: !! ≤ 30
   !" ≤ 20
   !! + !" ≤ 40
   !!, !" ≥ 0



40 !/

!0

0

30

20

10

40

302010

!! = # of Rippers sold in a day
!" = # of Ripper Carbons sold in a day
Objective: max 10!! + 30!"
Subject to: !! ≤ 30
  !" ≤ 20
  !! + !" ≤ 40
  !!, !" ≥ 0

Maximizing Profit



40 !/

!0

0

30

20

10

40

302010

!! = # of Rippers sold in a day
!" = # of Ripper Carbons sold in a day
Objective: max 10!! + 30!"
Subject to: !! ≤ 30
  !" ≤ 20
  !! + !" ≤ 40
  !!, !" ≥ 0

Maximizing Profit

!! ≤ #$



40 !/

!0

0

30

20

10

40

302010

!! = # of Rippers sold in a day
!" = # of Ripper Carbons sold in a day
Objective: max 10!! + 30!"
Subject to: !! ≤ 30
  !" ≤ 20
  !! + !" ≤ 40
  !!, !" ≥ 0

Maximizing Profit

!" ≤ %$



40 !/

!0

0

30

20

10

40

302010

!! = # of Rippers sold in a day
!" = # of Ripper Carbons sold in a day
Objective: max 10!! + 30!"
Subject to: !! ≤ 30
  !" ≤ 20
  !! + !" ≤ 40
  !!, !" ≥ 0

Maximizing Profit

!! + !" ≤ '$



40 !/

!0

0

30

20

10

40

302010

!! = # of Rippers sold in a day
!" = # of Ripper Carbons sold in a day
Objective: max 10!! + 30!"
Subject to: !! ≤ 30
  !" ≤ 20
  !! + !" ≤ 40
  !!, !" ≥ 0

Maximizing Profit

Feasible Region 
(area where all valid solutions lie)



40 !/

!0

0

30

20

10

40

302010

!! = # of Rippers sold in a day
!" = # of Ripper Carbons sold in a day
Objective: max 10!! + 30!"
Subject to: !! ≤ 30
  !" ≤ 20
  !! + !" ≤ 40
  !!, !" ≥ 0

Maximizing Profit

What is the optimal value?activeobs



40 !/

!0

0

30

20

10

40

302010

!! = # of Rippers sold in a day
!" = # of Ripper Carbons sold in a day
Objective: max 10!! + 30!"
Subject to: !! ≤ 30
  !" ≤ 20
  !! + !" ≤ 40
  !!, !" ≥ 0

Maximizing Profit

obj = 10×20 + 30×20 = 800

20, 20
X

,=
x1



Maximizing Profit Modification
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Subject to: +# ≤ 30
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MT Frisbee Company (MFC) wants to introduce a third frisbee aimed at kids: Ripper 
Jr. The Jr yields a profit of $15. Unfortunately, the Ripper and Ripper Jr use the same 
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Linear Program (LP)

Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time 
   (called integer linear program – ILP).

Objective:
• Can be minimization or maximization.
• Must be linear combinations of variables !! 
 (e.g. ""!" +⋯+ "#!# for constants "!, not "!!"!$).

Constraints:
• Can be ≤, ≥, =.
• Must be linear combinations of variables.

!! = # of Rippers sold
!" = # of Ripper Carbons
Objective: max10!! + 30!"
Subject to: !! ≤ 30
   !" ≤ 20
   !! + !" ≤ 40
   !!, !" ≥ 0

-explanation
of meaning
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of voters gained or lost based on each $1 spent advertising an issue. The 
campaign aims to minimize advertising expenses.
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Optimal Value: ! = −∞
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Maximum Flow Problem: Suppose we have the flow network below 
where each edge is labeled with its capacity. Give an LP whose solution 
is an s-t flow of maximum size.

s t
a

b

30

20

10
20

20

Bonus:
Give the general formulation for a 
generic graph G=(V,E) with capacities.

Some notation we’ve used in the past:
• We denote the capacity of edge s→a as c(s→a). (Note that c(s→a)=30 here.)
• We used f(s→a) to denote the flow on edge s→a
• To write that flow is conserved at node b, we might say

'
!
( ) → + ='

"
( + → -



Minimum-Cost Flow Problem: Suppose we have a target flow demand 
., and a flow network where each edge also has a cost in addition to its 
capacity. Pushing / flow along edge 0 incurs the cost /1(0). Find an 4 −
6 flow of minimum cost with value ..
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Minimum-Cost Flow Problem: Suppose we have a target flow demand 
., and a flow network where each edge also has a cost in addition to its 
capacity. Pushing / flow along edge 0 incurs the cost /1(0). Find an 4 −
6 flow of minimum cost with value ..
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Linear Program?


