Where we've been

- what is computable?
- given a computable problem, how to compute t how
fast?

Where we've been

- What is computable? (What are the limits? What are the differences between models of computation?)
- Given a computable problem, how to compute + how fast?

Where we've been

- What is computable? (What are the limits? What are the differences between models of computation?)
(Decidable)
- Given a computable problem, how to compute + how fast?

Goals for the next three lectures today: inturive understanding of LP nextfime: formalize tuesday: algoritums to solve UPs

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits.

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day.

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day. Day's Profit: ?

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day. Day's Profit: $\quad 10 x_{1}+30 x_{2}$

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day. Objective: $\quad 10 x_{1}+30 x_{2}$

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day. Objective: $\max 10 x_{1}+30 x_{2}$

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day. Objective: $\max 10 x_{1}+30 x_{2}$ Subject to: ?

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day. Objective: $\quad \max 10 x_{1}+30 x_{2}$ Subject to: $\quad x_{1} \leq 30$

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day. Objective: $\quad \max 10 x_{1}+30 x_{2}$ Subject to: $\quad x_{1} \leq 30$

$$
x_{2} \leq 20
$$

Maximizing Profit

MT Frisbee Company (MFC) sells two frisbees: The Ripper, and far fancier Ripper Carbon. MFC needs to decide how much of each frisbee it should make to maximize profits. Suppose:

1. Rippers yield profit of $\$ 10$ and Ripper Carbons $\$ 30$.
2. MFC can sell up to 30 Rippers and 20 Ripper Carbons per day.
3. MFC can manufacture up to 40 frisbees per day.

Let, $x_{1}=\#$ of Rippers sold in a day, $x_{2}=\#$ of Ripper Carbons sold in a day. Objective: $\max 10 x_{1}+30 x_{2}$ Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$

Linear Program (LP)

```
x}=# of Rippers sol
x}2=# of Ripper Carbon
Objective: max 10x 
Subject to: }\mp@subsup{x}{1}{}\leq3
    x
    x
    x},\mp@subsup{x}{2}{}\geq
```


Linear Program (LP)

Linear Program (LP)

Linear Program (LP)

- Can be \leq, \geq, $=$.
- Must be linear combinations of variables.

Maximizing Profit

$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

Maximizing Profit

$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

Maximizing Profit

$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

Maximizing Profit

$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

Maximizing Profit

$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

Maximizing Profit

$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

What is the optimal value?

Maximizing Profit

Maximizing Profit Modification

MT Frisbee Company (MFC) wants to introduce a third frisbee aimed at kids: Ripper Jr. The Jr yields a profit of $\$ 15$. Unfortunately, the Ripper and Ripper Jr use the same machine (two hours per frisbee for the Ripper and one hour for the Ripper Jr). There are only 60 machine hours available each day.
$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$

Maximizing Profit Modification

MT Frisbee Company (MFC) wants to introduce a third frisbee aimed at kids: Ripper Jr. The Jr yields a profit of $\$ 15$. Unfortunately, the Ripper and Ripper Jr use the same machine (two hours per frisbee for the Ripper and one hour for the Ripper Jr). There are only 60 machine hours available each day.
$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$

New formulation?

Maximizing Profit Modification

MT Frisbee Company (MFC) wants to introduce a third frisbee aimed at kids: Ripper Jr. The Jr yields a profit of $\$ 15$. Unfortunately, the Ripper and Ripper Jr use the same machine (two hours per frisbee for the Ripper and one hour for the Ripper Jr). There are only 60 machine hours available each day.
$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
$x_{3}=\#$ of Ripper Jrs sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}+15 x_{3}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2}+x_{3} \leq 40$
$\underline{2 x_{1}}+x_{3} \leq 60$

Maximizing Profit Modification

MT Frisbee Company (MFC) wants to introduce a third frisbee aimed at kids: Ripper Jr. The Jr yields a profit of $\$ 15$. Unfortunately, the Ripper and Ripper Jr use the same machine (two hours per frisbee for the Ripper and one hour for the Ripper Jr). There are only 60 machine hours available each day.
$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
$x_{3}=\#$ of Ripper Jrs sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}+15 x_{3}$
Subject to: $\quad x_{2} \leq 20$

$$
x_{1}+x_{2}+x_{3} \leq 40
$$

What does the

 feasible region look like now?$2 x_{1}+x_{3} \leq 60$

Maximizing Profit Modification

MT Frisbee Company (MFC) wants to introduce a third frisbee aimed at kids: Ripper Jr. The Jr yields a profit of $\$ 15$. Unfortunately, the Ripper and Ripper Jr use the same machine (two hours per frisbee for the Ripper and one hour for the Ripper Jr). There are only 60 machine hours available each day.
$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
$x_{3}=\#$ of Ripper Jrs sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}+15 x_{3}$
Subject to: $\quad x_{2} \leq 20$

$$
x_{1}+x_{2}+x_{3} \leq 40
$$

$$
2 x_{1}+x_{3} \leq 60
$$

Maximizing Profit Modification

MT Frisbee Company (MFC) wants to introduce a third frisbee aimed at kids: Ripper Jr. The Jr yields a profit of $\$ 15$. Unfortunately, the Ripper and Ripper Jr use the same machine (two hours per frisbee for the Ripper and one hour for the Ripper Jr). There are only 60 machine hours available each day.
$x_{1}=\#$ of Rippers sold in a day
$x_{2}=\#$ of Ripper Carbons sold in a day
$x_{3}=\#$ of Ripper Jrs sold in a day
Objective: $\quad \max 10 x_{1}+30 x_{2}+15 x_{3}$
Subject to: $\quad x_{2} \leq 20$

$$
x_{1}+x_{2}+x_{3} \leq 40
$$

$$
2 x_{1}+x_{3} \leq 60
$$

Linear Program (LP)

\rightarrow texplanation of meaning
$x_{1}=\#$ of Rippers sold $x_{2}=\#$ of Ripper Carbons

Objective: $\max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

Variables:

- Real numbers = solvable in polynomial time (called LP).
- Integers = not (yet?) solvable in polynomial time
(called integer linear program - ILP).
\qquad

Objective:

- Can be minimization or maximization.
- Must be linear combinations of variables x_{i} (e.g. $a_{1} x_{1}+\cdots+a_{n} x_{n}$ for constants a_{i}, not $a_{i} x_{1} x_{2}$).

Constraints:

- Can be $\leq, \geq,=$.
- Must be linear combinations of variables.

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 1: Make variables.
"What are the decisions that need to be made?"

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

$x_{1}=\$$ spent on infrastructure.
$x_{2}=\$$ spent on gun control.
$x_{3}=\$$ spent on farm subsidies.
$x_{4}=\$$ spent on gasoline tax.

Step 1: Make variables.
"What are the decisions that need to be made?"

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

$x_{1}=\$$ spent on infrastructure.
$x_{2}=\$$ spent on gun control.
$x_{3}=\$$ spent on farm subsidies.
$x_{4}=\$$ spent on gasoline tax.

Step 2: Make objective.
"What are we trying to maximize or minimize?"

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

$x_{1}=\$$ spent on infrastructure.
$x_{2}=\$$ spent on gun control.
$x_{3}=\$$ spent on farm subsidies.
$x_{4}=\$$ spent on gasoline tax.
Objective: $\min x_{1}+x_{2}+x_{3}+x_{4}$
Step 2: Make objective.
"What are we trying to maximize or minimize?"

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

$x_{1}=\$$ spent on infrastructure.
$x_{2}=\$$ spent on gun control.
$x_{3}=\$$ spent on farm subsidies.
$x_{4}=\$$ spent on gasoline tax.
Objective: $\min x_{1}+x_{2}+x_{3}+x_{4}$

Step 3: Make constraints.

"What are the requirements for the solution to be valid?"

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 3: Make constraints.
"What are the requirements for the solution to be valid?"
$x_{1}=\$$ spent on infrastructure.
$x_{2}=\$$ spent on gun control.
$x_{3}=\$$ spent on farm subsidies.
$x_{4}=\$$ spent on gasoline tax.
Objective: $\min x_{1}+x_{2}+x_{3}+x_{4}$
Subject to: $-2 x_{1}+8 x_{2}+10 x_{4} \geq 50,000$

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 3: Make constraints.
"What are the requirements for the solution to be valid?"

$$
\begin{aligned}
& x_{1}=\$ \text { spent on infrastructure. } \\
& x_{2}=\$ \text { spent on gun control. } \\
& x_{3}=\$ \text { spent on farm subsidies. } \\
& x_{4}=\$ \text { spent on gasoline tax. } \\
& \text { Objective: } \min x_{1}+x_{2}+x_{3}+x_{4} \\
& \text { Subject to: }-2 x_{1}+8 x_{2}+10 x_{4} \geq 50,000 \\
& \quad 5 x_{1}+2 x_{2} \geq 100,000 \\
& \quad 3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4} \geq 25,000
\end{aligned}
$$

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Do we need non-negativity constraints?

$$
\begin{aligned}
& x_{1}=\$ \text { spent on infrastructure. } \\
& x_{2}=\$ \text { spent on gun control. } \\
& x_{3}=\$ \text { spent on farm subsidies. } \\
& x_{4}=\$ \text { spent on gasoline tax. } \\
& \text { Objective: } \min x_{1}+x_{2}+x_{3}+x_{4} \\
& \text { Subject to: }-2 x_{1}+8 x_{2}+10 x_{4} \geq 50,000 \\
& \\
& \begin{array}{l}
5 x_{1}+2 x_{2} \geq 100,000 \\
3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4} \geq 25,000
\end{array} \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Non-negativity Constraints

$$
\begin{array}{ll}
\text { Objective: } & \max 100 x_{1}+300 x_{2} \\
\text { Subject to: } & x_{1} \leq 30 \\
& x_{2} \leq 20 \\
& x_{1}+x_{2} \leq 40 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Non-negativity Constraints

Objective: $\quad \max 10 x_{1}+30 x_{2}$
Subject to: $\quad x_{1} \leq 30$
$x_{2} \leq 20$
$x_{1}+x_{2} \leq 40$
$x_{1}, x_{2} \geq 0$

Non-negativity Constraints

Objective: $\min x$
Subject to: $x \geq 0$

Optimal Value: ?

Non-negativity Constraints

Objective: $\min x$
Subject to: $x \geq 0$

Optimal Value: $x=0$

Non-negativity Constraints

Objective: $\min x$
Subject to: $x \geq 0$

Optimal Value: ?

Non-negativity Constraints

Objective: $\min x$
Subject to: $x \geq 0$

Optimal Value: $x=-\infty$

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estimated the number of voters gained or lost based on each $\$ 1$ spent advertising an issue. The campaign aims to minimize advertising expenses.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Do we need non-negativity constraints?

$$
\begin{aligned}
& x_{1}=\$ \text { spent on infrastructure. } \\
& x_{2}=\$ \text { spent on gun control. } \\
& x_{3}=\$ \text { spent on farm subsidies. } \\
& x_{4}=\$ \text { spent on gasoline tax. } \\
& \text { Objective: } \min x_{1}+x_{2}+x_{3}+x_{4} \\
& \text { Subject to: }-2 x_{1}+8 x_{2}+10 x_{4} \geq 50,000 \\
& \\
& \begin{array}{l}
5 x_{1}+2 x_{2} \geq 100,000 \\
3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4} \geq 25,000 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
\end{aligned}
$$

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has estion alls number of voters gained or lost based on each $\$ 1$ spent advertis campaign aims to minimize advertising expenses.

Maximum Flow Problem: Suppose we have the flow network below

 where each edge is labeled with its capacity. Give an LP whose solution is an s -t flow of maximum size.

Some notation we've used in the past:

- We denote the capacity of edge $s \rightarrow a$ as $c(s \rightarrow a)$. (Note that $c(s \rightarrow a)=30$ here.)
- We used $\mathrm{f}(\mathrm{s} \rightarrow \mathrm{a})$ to denote the flow on edge $\mathrm{s} \rightarrow$ a
- To write that flow is conserved at node b, we might say

$$
\sum_{u} f(u \rightarrow b)=\sum_{v} f(b \rightarrow v)
$$

Bonus:
Give the general formulation for a generic graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with capacities.

Minimum-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost $k c(e)$. Find an $s-$ t flow of minimum cost with value d.

Minimum-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost $k c(e)$. Find an $s-$ t flow of minimum cost with value d.

Let $d=30$

$$
30+20+10+20=80
$$

Minimum-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost $k c(e)$. Find an $s-$ t flow of minimum cost with value d.

$$
30+20+10+20=80 \quad 10+10+200+20=240
$$

Minimum-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost $k c(e)$. Find an $s-$ t flow of minimum cost with value d.

$$
30+20+10+20=80 \quad 10+10+200+20=240
$$

Linear Program?

