undecidable no algorithm often, undecidable props. ave problems about code
proving mat a problem is undecidable:
D proof by contradiction directly from TM
TM Y (Y) <=> TM not (Y) accept
2) proof by reduction from a known undecidable prob.
5 fice's Theorem
Given $(M7)$, does M accept $\frac{7}{2 \cdot g \cdot j}$?
Rice's Theorem Let f be any set of canguages so mat:
(a) There is a TMY such that

$ACCEPT(Y) \in -f$
(b) There is a TM N such prat
ACLEPT (N) & J
Deciding unether ACCEPT(M) E-J
is impossible.
Deciding mêther à TAI accepts languages w/ Some property
(e.g., contain E) is underidable, Unless:
- NO TAL accepts languages w/ mis property
- All TMS accept languages w/ this property TM
Problem Given M, does Macept E
- f = all languages over 2 containing 2
- Y = a TM frat accepts everything
ACCEPT(Y)= 2° ey because EE 2* 1
- N = a TM that accepts homing
ACCEPT(N) = Ø & J because Ø & J

By Rice's Thm, deciding ACCEPT(M) E-f is impossible ACCEPTE = Z <m7: accept<="" m="" th=""><th>uneprer 5 EZ is undecidable.</th></m7:>	uneprer 5 EZ is undecidable.
Some scratch work: is ssored	
$i \leq \frac{1}{1} \notin \mathcal{E} \mathcal{J}^{2} no$ $\int \mathcal{I} \{1, 1, 1, \dots \}$	
$J = 221,10,23,22,1,11,111$ $J = a set of sets$ $E^* = a set of strings$	

accepts the string grizzlies} I. GRIZ = 2 CM7 : MGriz is undecidable. froot let f= the set of all langs containing the string grizzlies let Y= Me TM accepting all strings $ACCEPT(Y) = E^* \in J$ let N= the TM accepting ustning ACCEPT(N)=Ø Ø J By Rice's Thm, deciding unemer ACCEPT(M) E J is impossible Summary of computability: all langs CE-langs decidable largs. reg. lang

how fast? decidable reductions our tool for " how fast? is decidable. undecidability: suppose Then B is too. runtime: suppose A is solvable quictly. Then B is too. independent set Vertex (over Clique Q: largest Q: largest Q: smallest

Suppose I have magic black box to solve Max Clique Max (nd set can now be solved. Alg for maxindset(G): build a new graph Gr with Ntime N = V time E= { un : un & G3 0 Solve Max Clique on G maxclig **MaxIndependentSet** MAXCLIOUE complement Ē in $O(V^2)$ graph graph size of largest size of largest time clique in \overline{G} independent set in \overline{G}

Max ind set reduces to minvertex cover Assume I have a black box solving MinUC in polynomial time Max Ind Set (G): let in= # of verts in G return n- Minvertex Cover (G)

•	•																														
•	•																														
•	•																														
•	•																														
•	•																														
•	•																														
•	•																														
		•		•	•	•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	•					•	•	
		•		•	•	•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	•					•	•	
		•		•	•	•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	•					•	•	
	•	•						•	•	•		•	•	•	•	•	•			•	•	•	•	•							
		•							•		•	•			•		•				•								•	•	
		•							•		•	•			•		•				•								•	•	
		•							•		•	•			•		•				•								•	•	
		•							•		•	•			•		•				•								•	•	
	•	•	•					•	•			•			•		•	•			•	•						•			
•	•					•	•			•			•	•						•		•	•	•						•	