

Does $\quad r_{1}=T$

$$
\begin{aligned}
& y_{1}=T \\
& x_{2}=T \text { evaluafe to } T \text { ? }
\end{aligned}
$$

$$
x_{3}=T
$$



CIRCUITSAT: Given a boollancircuit B can we y turn on the light?
satisfiable
we can verify a proposed yes answer in polynomial time.

$$
\langle=\rangle
$$

the problem can be solved in nondeterministic polynomial time
A problem is in NP if it can be verified in poly time.
unicu are in AP? why?


- KVERTEXCOVER: given a graph G and an integer $k$, does $G$ have a vertex cover of size $k$ ?
- SMALLESTVC: given $G=\left(V_{1} E\right)$ and $C \subseteq V$, is $C$ a vertex cover of smallest size for
G?
NP - Verify in poly time
$P$ - solve in poly time

$$
\begin{aligned}
& X \in P \Rightarrow X \in N P \text { yes } \\
& X \in N P=X \in P
\end{aligned}
$$

$P=N P$ or $P \neq N P$ ?
Cook-Levin: circuitSAT $\in P \Rightarrow P=N P$
$X$ is AP-hard: there is a polynomial time veduction from SAf to $X$
$X$ is NP-hard: there is a polytime neduction from some khordn NP-hard problem to $X$.

3SAT : Given a boolecen formula in 3CNF, is it satisfiable?

$$
\begin{aligned}
& \left.\left(\left(x_{1} \wedge x_{2}\right) \vee x_{3}\right) \vee \overline{x_{3}}\right) \\
& \left(y_{1} \vee \overline{x_{1}} \vee \overline{x_{4}}\right) \wedge\left(\overline{y_{1}} \vee x_{1} \vee z_{1}\right) \wedge\left(\overline{y_{1}} \vee x_{1} \vee \overline{z_{1}}\right) \wedge\left(\overline{y_{1}} \vee x_{4} \vee z_{2}\right) \wedge\left(\overline{y_{1}} \vee x_{4} \vee \overline{z_{2}}\right) \\
& \wedge\left(y_{2} \vee x_{4} \vee z_{3}\right) \wedge\left(y_{2} \vee x_{4} \vee \overline{z_{3}}\right) \wedge\left(\overline{y_{2}} \vee \overline{x_{4}} \vee z_{4}\right) \wedge\left(\overline{y_{2}} \vee \overline{x_{4}} \vee \overline{\bar{z}_{4}}\right) \\
& \wedge\left(y_{3} \vee \overline{x_{3}} \vee \overline{y_{2}}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee z_{5}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee \overline{z_{5}}\right) \wedge\left(\overline{y_{3}} \vee y_{2} \vee z_{6}\right) \wedge\left(\overline{y_{3}} \vee y_{2} \vee \overline{v_{6}}\right) \\
& \wedge\left(\overline{y_{4}} \vee y_{1} \vee x_{2}\right) \wedge\left(y_{4} \vee \overline{x_{2}} \vee z_{7}\right) \wedge\left(y_{4} \vee \overline{x_{2}} \vee \overline{z_{7}}\right) \wedge\left(y_{4} \vee \overline{y_{1}} \vee \nabla_{8}\right) \wedge\left(y_{4} \vee \overline{y_{1}} \vee \overline{z_{8}}\right) \\
& \wedge\left(y_{5} \vee x_{2} \vee z_{9}\right) \wedge\left(y_{5} \vee x_{2} \vee \overline{\bar{q}_{9}}\right) \wedge\left(\overline{y_{5}} \vee \overline{x_{2}} \vee z_{10}\right) \wedge\left(\overline{y_{5}} \vee \overline{x_{2}} \vee \overline{z_{10}}\right) \\
& \wedge\left(y_{6} \vee x_{5} \vee z_{11}\right) \wedge\left(y_{6} \vee x_{5} \vee \overline{z_{11}}\right) \wedge\left(\overline{y_{6}} \vee \overline{x_{5}} \vee z_{12}\right) \wedge\left(\overline{y_{6}} \vee \overline{x_{5}} \vee \overline{z_{12}}\right) \\
& \wedge\left(\overline{y_{7}} \vee y_{3} \vee v_{5}\right) \wedge\left(y_{7} \vee \overline{y_{3}} \vee z_{13}\right) \wedge\left(y_{7} \vee \overline{y_{3}} \vee \overline{z_{13}}\right) \wedge\left(y_{7} \vee \overline{y_{5}} \vee z_{z_{14}}\right) \wedge\left(y_{7} \vee \overline{y_{5}} \vee \overline{z_{14}}\right) \\
& \wedge\left(y_{8} \vee \overline{y_{4}} \vee \overline{y_{7}}\right) \wedge\left(\overline{y_{8}} \vee y_{4} \vee z_{15}\right) \wedge\left(\overline{y_{8}} \vee y_{4} \vee \overline{z_{15}}\right) \wedge\left(\overline{y_{8}} \vee y_{7} \vee z_{16}\right) \wedge\left(\overline{\overline{8}} \vee y_{7} \vee \overline{z_{16}}\right) \\
& \wedge\left(y_{9} \vee \overline{y_{8}} \vee \overline{y_{6}}\right) \wedge\left(\overline{y_{9}} \vee y_{8} \vee z_{17}\right) \wedge\left(\overline{y_{9}} \vee y_{6} \vee z_{18}\right) \wedge\left(\overline{y_{9}} \vee y_{6} \vee \overline{z_{68}}\right) \wedge\left(\bar{y} \vee \vee y_{8} \vee \overline{z_{17}}\right) \\
& \stackrel{(1)\left(y_{9} \vee z_{19} \vee \vee z_{20}\right) \wedge\left(y_{9} \vee \overline{z_{11}} \vee z_{20}\right) \wedge\left(y_{9} \vee z_{19} \vee \overline{z_{20}}\right) \wedge\left(y_{9} \vee \overline{z_{19}} \vee \overline{z_{20}}\right)}{\text { Clause }} \\
& \text { and } \\
& \text { + } \\
& \text { ex: }(a \vee b \vee \bar{c}) \wedge(b \vee \bar{d} v e) \wedge(\bar{b} \vee \overline{\mathcal{E}} \vee \overline{\mathrm{e}}) \\
& \text { is it satisfiable? } a, b, \bar{c}
\end{aligned}
$$

SAT reduces to 3SAT in polytime $=7$ 3SAT is NP-hard

Claim: Max Independent Set is NP hard. Proof: we give a polytime reduction from $38 A T$ to $M a x \ln d s e t$.


3SAT (ब):
Transform $\Phi$ to $G$
$k=\#$ of clauses in $\Phi$
$n=\operatorname{Max} \operatorname{Ind} \operatorname{set}(G)$
if $n=k$ :
return $T$
elise return $F$

Given

$$
(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
$$

transform to $G$


Transform ( $\Phi$ ):


- make 1 triangle perclause
- connect inverses
claim:
(1) is satisfiable


$$
\langle\Rightarrow
$$

$G$ has an in dep. Set of size
Proof:
$=7$
Ф is satisfiable.
Fix a satisfying assn.
Each clause has a $T$ literal.
select ore from each and add to a set S.
$S$ is an 15.

