What's going to be different about our last two papers from what we've seen so far
input:
output:
runtime:
worst -case

Problem	Input	Output	Runtime
Max flow	$G=(V, E), s, t$	Maximum flow	$O\left(E^{1+o(1)}\right)$
	$\in V, C: E \rightarrow \mathbb{R}$	$F: E \rightarrow \mathbb{R}$	$O\left(V E^{2}\right)$
Flow decomposition	$G=(V, E), s, t$	P, w decomposing flow	$O\left(E^{2}\right)$
	$\in V, F: E \rightarrow \mathbb{R}$		
Minimum flow	$G=(V, E), s, t$	P, w decomposing flow	NP-Hard
decomposition	$\in V, F: E \rightarrow \mathbb{R}$	$\|P\|$ minimized	
Linear programming	$\max c^{t} x$	Feasible x^{*} maximizing	Matrix multiplication
	$A x \leq b$	objective (or	time
	$x \geq 0$	infeasible/unbounded)	
Integer linear	$x \in \mathbb{R}^{d}$		
programming	$\max c^{t} x$	Feasible x^{*} maximizing	NP-Hard
	$A x \leq b$	objective (or	
infeasible/unbounded)			
	$x \geq 0$		

one single answer

Data structures vs. algorithms
specific input
bring that can give many
(query)
space $/$ memory
queries must re fast
egg. Google
runtime
okay (?) w/ slower
runtime
log. $0: 1+$ gas

Goals for today
data structures:
hash table bloom filter
randomness
estimate vs. exact

What do you already know about hash functions and hash tables?

- data structure
- spread out inputs
- hash function maps inputs to indices
\rightarrow modular antnmetic prime
- insert: O(1)
- query: o(1)

Hash Table

Hash Function

(owner, pet) dictionary

Assume hash function operates on any item from U (integers, strings, etc) and is
$O(1)$ time

Hash Table

"Hashing with chaining" or "chain hashing"

Hash Function

Assume hash function operates on any item from U (integers, strings, etc) and is $O(1)$ time

Hash Table

I add m items to an n-bucket hash table

Without probability, what can I say?

Question	Assumption statement comment
Does any bucket have more the one item?	$m>n$ yes by pigeon hole
principle	

Hash Table

I add m items to an n-bucket hash table

Without probability, what can I say?

Question	Assumption Statement	Comment	
Does any bucket have more the one item?	$m>n$	Yes	Pigeonhole principle
Is any bucket empty?	$m<n$	Yes	"Empty pigeonhole" principle
What is the average bucket occupancy?	-	m / n	-

How do we get $\mathrm{O}(1)$ expected query time?

Hash Function

```
int hash(int x) \& \(b^{s a l t}\)
    int a \(=349534879\); // randomly chosen
    int \(b=23479238 ; ~ / /\) randomly chosen
    // return some function of \(x\), \(a\) and \(b\)
\}
```

E.g. The family $h_{a, b}(x)=(a x+b)$ mod p where p is prime \& a, b are uniform, independent draws from $\{0,1, \ldots, p-1\}$

When did we choose a and b ?

Algorithm phases

Algorithm phases

Random variables
used in analysis
are random over
the choice of
hash functions
Not over
the input data

We make no distributional assumptions about the input.

Phase 1
 Choose algorithm

Universal hashing

A family of hash functions H from universe U with $|U| \geq n$ to range $\{0,1, \ldots, n-1\}$

Universal hashing

A family of hash functions H from universe U with $|U| \geq n$ to range $\{0,1, \ldots, n-1\}$ is 2 -universal if
for distinct elements x_{1}, x_{2} and for function h drawn uniformly from H :

$$
\operatorname{Pr}\left(h\left(x_{1}\right)=h\left(x_{2}\right)\right) \leq \frac{1}{n}
$$

$$
\operatorname{Pr}\left(h\left(x_{1}\right)=h\left(x_{2}\right)\right) \leq \frac{1}{n}
$$

How do we get $O(1)$ expected query time?

set
A simpler problem: have we seen x ?
But suppose my data is so big that I can't have n close to m estimate vs. exact

A simpler problem: have we seen x ?
But suppose my data is so big that I can't have n close to m

