CSC $432 / 532$
Advanced Algoritums Topics course goals

- what is computation?
- what is computable?
- what is computable quickly?
- unat strategies ran we use to design algoritums to compute quickly?
- practice strategies for understanding difficult / non-intuitive ideas
- practice communicating about CS theory, algoritums
-in writing
- in presentation

Today: Strings - practice recursion,

Definitions
A string is either

- nothing
- a symbol followed by a string \rightarrow from alphabet \sum, some non-empty'set
A string is either
- E (empty string)
- (a, x) where $a \in \sum$ and x is a string

$$
\begin{aligned}
\text { string } & =(s, t \text { ring) } \\
& =(s,(t, \text { ring })) \\
& \vdots \\
& =(s,(t,(r,(i,(n,(g))))))
\end{aligned}
$$

but we will omit (,
$\sum^{*}=$ set of all strings over \sum^{*} ex string $\in\{a, b, c, \cdots, x, y, z\}^{*}$

$$
\begin{aligned}
& 0110 \in\{0,1\}^{*} \\
& a+\operatorname{tg} c a \in\{a, c, t, g\}^{*}
\end{aligned}
$$

length function - "\# of symbols"

$$
\begin{aligned}
& \text { Let } w \text { be a string } \\
& \begin{aligned}
|w|:=\left\{\begin{array}{c}
x \\
1
\end{array}+|x| \text { if } w=\varepsilon^{\chi} x \text { for } a \in Z,\right. \\
\text { string } x
\end{aligned} \\
& \begin{aligned}
\text { ex } \mid \text { string } \mid & =1+\mid \text { tring } \mid \\
& =1+1+|r i n g| \\
& \vdots \\
& =1+1+1+1+1+1+|\varepsilon| \\
& =6+0=6
\end{aligned}
\end{aligned}
$$

concatenation - "paste one after
another" w, z strings

$$
\frac{w}{\uparrow} \cdot z:=\left\{\begin{array}{cl}
z & \text { if } w=\varepsilon \\
a(x \cdot z) & \text { if } w=a x
\end{array}\right.
$$

ex

$$
\begin{aligned}
\text { foot } \cdot \text { ball } & =f(\text { oot } \cdot \text { ball }) \\
& =f(o(o t \cdot \text { ball }) \\
& =f(o(0(t \cdot b a l l)) \\
& =f(0(0(t(\varepsilon \cdot b a l l)))) \\
& =f(o(o(t(\text { ball))))} \\
& =\text { football }
\end{aligned}
$$

Theorem for any string $w, w \cdot \varepsilon=w$. Let w be an avbitrany string. Assume that for all strings x that are shorter tran $w, x \cdot \sum \pm x$.
There are two cases:
case 1: $\omega=\varepsilon$.

$$
\begin{aligned}
\downarrow w \cdot \varepsilon & =\varepsilon \cdot \varepsilon & & \text { because } w=\varepsilon \\
& =\varepsilon & & \text { def of } \omega= \\
& =w & & \text { because } w=\varepsilon
\end{aligned}
$$

case 2: $\omega=a y$

$$
\begin{aligned}
w \cdot \varepsilon & =(a y) \cdot \varepsilon \\
\downarrow & \\
& =a, y \cdot \varepsilon) \\
& =a y \\
& =w
\end{aligned}
$$

because $w=a y$ by inductive hypothesis because $w=a y$
in both cases
Thevetorev, $w \cdot \varepsilon=w$.
Theorem for all strings w and z, $|w \cdot z|=|w|+|z|$.

Proof let w, z be arbitrany strings. Assume for a $11 x$ shorter than w,

$$
|x \cdot z|=|x|+|z|
$$

case 1: $w=\varepsilon$

$$
\begin{aligned}
|w \cdot z| & =|\varepsilon \cdot z| \\
& =|z| \\
& =|\varepsilon|+|z| \\
& =|z|+|z| \\
& =|w|+|z|
\end{aligned}
$$

because $\omega=\varepsilon$ def of. math met of 11 because $w=\varepsilon$
case 2: w= ax
because $w=a x$
dit. of 1
Net of 11
TH
Let of 11 because $w=a x$

Therefore, $|w \cdot z|=|w|+|z|$.

