Undecidable = no algorimm at all Given inpot a TM M: w M Sveyect (nalt) Jinfinite 100p M defines 4 Languages: - ACCEPT (M) = ¿WE E* : Maccepts} - $FEJE(T(M) = \{w \in E^* : M vejects\}$ - HALT $(M) = \{W \in \mathbb{Z}^* : M \text{ halts}\}$ = ACCEPT(M) U REJECT(M) $-DIVERGE(M) = \Xi^* | HALT(M)$ let <> be some encoding scheme for TMS. A language is decidable if pore is a decider

let SELFREJECT = { (M) = M vejeets < M)}
Theorem: SELFREJECT is undecidable.
Proof: Suppose not
let SR be me TM that decides SELEPETECT
(M) SR 100P reject
- Cans - TAY V
$\Rightarrow \Rightarrow accept$
ACCEPT (SR) = SELFREJECT DIVERGE(SR) = Ø
SR accepts <m> iff M rejects <m></m></m>
SR accepts <sr> iff SR vejects <sr></sr></sr>
P 2=> 7P
Contradiction. So SR ran't exist.

TMY,							Q = 2 Si, Gacc, greject, 9,96,4} [= 20,1, D, ×, \$} S:																														
•	· · · ·	₽ ₽ 0	1	•		+	ŧ	•	1 7 1	. a	. (•	+ + .		-			· · · · · · · ·	•	++	₹ ₹	\$, (,	€) (9));	=(9	, , ,	,1	- ₋₇ t) ا ا	>
•														•					•	•																	
	0 0		•			•	•							•	•			•	•	•						•					•	•	•			• •	
	• •		•	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•		• •	
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
		•	•	•		•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	• •	
	• •																																				
	• •	•	•	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	• •	
	• •																																				
		•	•			•	•							•					•	•												•	•	•	•		
•	• •																																			• •	
	• •	•		•									•		•						•		•					•	•					•	•		
	• •													0																						• •	
•	• •					•	•	•						•	•			•	•	•					•								•				
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	• •	
	• •	•	•	•		•	•	•	•			•	•	•	•			•	•	•	•	•	•	•	•	•		•	•		•		•	•	•	• •	
•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
-																																					

HALT = { (M, w7 : M halts on imput w} can me just von Mon w? No-unat if M loops on w? let SELFHALT = { < M7 = M haltson < m7} Theorem: SELFHALT is undecidable. Phoof: Suppose not. let SH be a TM mat decides SELFHALT. Can une se done? SO SH accepts < M7 (=> M halts on < M7 So SH accepts <AI> (=> SH halts on <SH> Nope let SHX be a TM built from SH where every transition to an accept state is redirected to a houg state. SH* does not half on 2M7 <=> M hats on <m) SH* does not half on 2sH*y<=>SH*halts on <SH* Contradiction? So SH can't exist.

Theorem: HALT is undecidable. Proof: Suppose HALT is decidable. let H be a TM mat decides HALT. That is, Haccepts < M, w7 67 M haltsonw. [Now, we can decide SELTHALT vy] running (M, <M) on H. is undecidable, so H BUT SELFHALT can't exist. lecall SELFHALT = E < M7 = M halts on < M7} Proof by reduction that X is undecidable IF you can reduce an undecidable problem to X, then X is undecidable.