Handling NP-Hardness

Handling NP-Hardness

Your problem is NP-hard. What to do?

2. Heuristics - no guarantee on optimality
3. Approximation Algorithms

Approximation Algorithms

Approximation Algorithms

Example: If my CheapestToiletPaperInMissoula algorithm is a 1.25-approximation algorithm, the cost of the toilet paper it finds is at most 1.25 times the optimal cost.

Approximation Algorithms

Cost (size) of algorithm's solution.

Approximation Ratio

$$
\begin{aligned}
& \text { Cost (size) of } \\
& \text { optimal solution. }
\end{aligned}
$$

Example: If my CheapestToiletPaperInMissoula algorithm is a 1.25-approximation algorithm, the cost of the toilet paper it finds is at most 1.25 times the optimal cost. I.e. If cheapest toilet paper in Missoula is $\$ 2.00 /$ roll, CheapestToiletPaperInMissoula will find toilet paper that is at most $\$ /$ roll.

Approximation Algorithms

Cost (size) of algorithm's solution.

Approximation Ratio

Cost (size) of optimal solution.

Example: If my CheapestToiletPaperInMissoula algorithm is a 1.25-approximation algorithm, the cost of the toilet paper it finds is at most 1.25 times the optimal cost.
I.e. If cheapest toilet paper in Missoula is $\$ 2.00 / r o l l$, CheapestToiletPaperInMissoula will find toilet paper that is at most $\$ 2.50 /$ roll.

Approximation Algorithms

Example:

Approximation Algorithms

Example: α

- Suppose I know my algorithm is a 1.12-approximation algorithm.

Approximation Algorithms

Example:

- Suppose I know my algorithm is a 1.12-approximation algorithm.
- Suppose my algorithm returns a solution of cost (size) 746.125.

Approximation Algorithms

Example:

- Suppose I know my algorithm is a 1.12-approximation algorithm.
- Suppose my algorithm returns a solution of cost (size) 746.125.

What do I know about OPT?

Approximation Algorithms

Example:

- Suppose I know my algorithm is a 1.12-approximation algorithm.
- Suppose my algorithm returns a solution of cost (size) 746.125.

Then, I know that $746.125 \leq 1.12$ OPT

Approximation Algorithms

Example:

- Suppose I know my algorithm is a 1.12-approximation algorithm.
- Suppose my algorithm returns a solution of cost (size) 746.125.

Then, I know that $746.125 \leq 1.12$ OPT

$$
\Rightarrow \frac{746.125}{1.12}=666.183 \leq \text { OPT } \leq 746.125
$$

Vertex Cover - Problem

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

N

Vertex Cover

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC algorithm:

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vc 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges.

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges.

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges.

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges.

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges.

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vc 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges.

Which edge gets selected next?

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges.

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vc 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm = ALG = ? ?

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.

VC 2-approximation algorithm: while uncovered edge exists

$$
A l G \leq \alpha O P T
$$ select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm = ALG = ??
Discuss with a partner

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
$\Rightarrow \#$ vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$
A vertex from each edge in E^{\prime} must be part of every vertex cover

True or False?

Discuss with a partner

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$
A vertex from each edge in E^{\prime} must be part of every vertex cover.
If we selected fewer than one vertex per edge, we would not have a vertex cover, because that edge would not be covered!

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$
A vertex from each edge in E^{\prime} must be part of every vertex cover.

$$
\Rightarrow \text { In relation to OPT?? }
$$

Vertex Cover

> Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$
A vertex from each edge in E^{\prime} must be part of every vertex cover.

$$
\Rightarrow\left|E^{\prime}\right| \leq \text { OPT }
$$

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$
A vertex from each edge in E^{\prime} must be part of every vertex cover.

$$
\Rightarrow\left|E^{\prime}\right| \leq \text { OPT }
$$

...ALG $\leq \alpha$ OPT??

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$
A vertex from each edge in E^{\prime} must be part of every vertex cover.

$$
\Rightarrow\left|E^{\prime}\right| \leq \text { OPT }
$$

Therefore, ALG = $2\left|E^{\prime}\right|$

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$
A vertex from each edge in E^{\prime} must be part of every vertex cover.

$$
\Rightarrow\left|E^{\prime}\right| \leq \text { OPT }
$$

Therefore, ALG = $2\left|E^{\prime}\right| \leq 2$ OPT

Vertex Cover

Vertex Cover: Given graph $G=(V, E)$, find smallest $V^{\prime} \subseteq V$ such that each edge in E contains an end point in V^{\prime}.
vC 2-approximation algorithm: while uncovered edge exists select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E^{\prime} be the edges selected by the algorithm.
\Rightarrow \# vertices selected by algorithm $=\mathrm{ALG}=2\left|E^{\prime}\right|$
A vertex from each edge in E^{\prime} must be part of every vertex cover.

$$
\Rightarrow\left|E^{\prime}\right| \leq \text { OPT }
$$

Therefore, ALG $=2\left|E^{\prime}\right| \leq 2$ OPT \Rightarrow ALG ≤ 2 OPT

Vertex Cover - Improvement

$$
\begin{aligned}
& \text { while uncovered edge exists } \\
& \text { select both vertices from uncovered edge } \\
& \quad \Rightarrow \text { ALG } \leq 2 \text { OPT }
\end{aligned}
$$

Is this the best this algorithm can do?

$$
\begin{aligned}
& A L G \leqslant 1.5 \text { OPT? } \\
& A L G=2 O P T
\end{aligned}
$$

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge
\Rightarrow ALG ≤ 2 OPT
Is this the best this algorithm can do?
I.e. Can we guarantee this algorithm does better than 2 OPT?

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

$$
\Rightarrow \mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Is this the best this algorithm can do?
I.e. Can we guarantee this algorithm does better than 2 OPT?

Is there a graph where this algorithm does exactly 2 OPT?

Which of these would be easier to prove?

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

$$
\Rightarrow \mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Is this the best this algorithm can do?
I.e. Can we guarantee this algorithm does better than 2 OPT?

Is there a graph where this algorithm does exactly 2 OPT?

Try to find a graph where ALG $=2$ OPT for this algorithm

want K veAs, connected G	$A L G$	JPT	α
	2	1	2
0	6	2	2

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

$$
\Rightarrow \mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Is this the best this algorithm can do?
I.e. Can we guarantee this algorithm does better than 2 OPT?

Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

$$
\Rightarrow \mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Is this the best this algorithm can do?
I.e. Can we guarantee this algorithm does better than 2 OPT?

Is there a graph where this algorithm does exactly 2 OPT?

Complete Bipartite Graph

ALG

OPT
$\lfloor\mathrm{ALG} \mid=2 k: v \notin \mathrm{ALG} \Rightarrow$ all neighbors are $\Rightarrow k$ edges selected \Rightarrow all $2 k$ nodes selected.
$|\mathrm{OPT}|=k$: Fewer than \underline{k} nodes selected $\Rightarrow \exists$ unselected edge.

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

$$
\Rightarrow \mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Is this the best this algorithm can do?
I.e. Can we guarantee this algorithm does better than 2 OPT?

Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph
\therefore The best Vertex Cover can be approximated is within a factor of 2

ALG

OPT

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

$$
\Rightarrow \mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Is this the best this algorithm can do?
I.e. Can we guarantee this algorithm does better than 2 OPT?

Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

ALG

OPT

The best Vertex Cover can be approximated is within a factor of 2

True or false?

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

$$
\Rightarrow \mathrm{ALG} \leq 2 \mathrm{OPT}
$$

Is this the best this algorithm can do?
I.e. Can we guarantee this algorithm does better than 2 OPT?

Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

ALG

OPT
\therefore The boct Verte Cover can be approsmated is within ractor ols

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

VC Inapproximability:

- Cannot be approximated within a factor of 1.3606 unless $P=N P$.

can be approsmated is within ractor ot?

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

VC Inapproximability:

- Cannot be approximated within a factor of 1.3606 unless $P=N P$.

How do you think we prove this?

Complete
Bipartite Graph

OPT
can be apprsmated is within ractor ols

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

VC Inapproximability:

- Cannot be approximated within a factor of 1.3606 unless $P=N P$.
- Cannot be approximated within any constant factor better than 2 unless the Unique Games Conjecture is false.

Complete Bipartite Graph

ALG

OPT
can be apposumated is within actor ote

Vertex Cover - Improvement

while uncovered edge exists select both vertices from uncovered edge

VC Inapproximability:

- Cannot be approximated within a factor of 1.3606 unless $P=N P$.
- Cannot be approximated within any constant factor better than 2 unless the Unique Games Conjecture is false.
- Is approximable within $2-\frac{\log \log |V|}{2 \log |V|}$.

Complete
Bipartite Graph

ALG

OPT
can be appromated is within ractor ols

