Recall from lecture that a regular expression is compact notation for a language (that is, a set of strings). Formally, a regular language is one of the following:

- The symbol \varnothing (representing the empty set)
- Any string (representing the set containing only that string)
- $R+S$ for some regular expressions R and S (representing alternation / union)
- $\boldsymbol{R} \cdot \boldsymbol{S}$ or $\boldsymbol{R S}$ for some regular expressions R and S (representing concatenation)
- R^{*} for some regular expression R (representing Kleene closure / unbounded repetition)

In the absence of parentheses, Kleene closure has highest precedence, followed by concatenation. For example, $1+01^{*}=\{0,1,01,011,0111, \ldots\}$, but $(1+01)^{*}=\{\varepsilon, 1,01,11,011,101,111,0101, \ldots\}$.

Give regular expressions for each of the following languages over the binary alphabet $\{0,1\}$. (For extra practice, find multiple regular expressions for each language.)
o. All strings.

1. All strings containing the substring 000 .
2. All strings not containing the substring 000.
3. All strings in which every run of 0 s has length at least 3 .
4. All strings in which every 1 appears before every substring 000 .
5. All strings containing at least three 0s.
6. Every string except 000. [Hint: Don't try to be clever.]

More difficult problems to work on later:

7. All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 1 .
*8. All strings containing at least two 0 s and at least one 1 .
*9. All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 2 .
8. All strings in which every run has odd length. (For example, 0001 and 100000111 and the empty string ε are in this language, but 000000 and 001000 are not.)
\star_{11}. All strings in which the substring 000 appears an even number of times. (For example, 01100 and 000000 and the empty string ε are in this language, but 00000 and 001000 are not.)
