Prove that each of the following languages is not regular, first using fooling sets and then (for problems 3,4 , and 5) using a reduction argument. You may use the fact (proven in class and in the lecture notes) that the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular. See the next page for a solved example showing both types of proof.

1. $\left\{0^{2^{n}} \mid n \geq 0\right\}$
2. $\left\{0^{2 n} 1^{n} \mid n \geq 0\right\}$
3. $\left\{0^{m} 1^{n} \mid m \neq 2 n\right\}$
[Hint: There is a short reduction argument, but write the fooling set argument first.]
4. Strings over $\{0,1\}$ where the number of 0 s is exactly twice the number of 1 s .
[Hint: There is a short reduction argument, but write the fooling set argument first.]
5. Strings of properly nested parentheses (), brackets [], and braces $\}$. For example, the string $([])\}$ is in this language, but the string ($[$)] is not, because the left and right delimiters don't match.
[Hint: There is a short reduction argument, but write the fooling set argument first.]

Harder problems to think about later:

6. Strings of the form $w_{1} \# w_{2} \# \cdots \# w_{n}$ for some $n \geq 2$, where each substring w_{i} is a string in $\{0,1\}^{*}$, and some pair of substrings w_{i} and w_{j} are equal.
7. $\left\{\theta^{n^{2}} \mid n \geq 0\right\}$
8. $\left\{w \in(0+1)^{} \mid w\right.$ is the binary representation of a perfect square $\}$

Solved problem:

9. Prove that the language $L=\left\{w \in(0+1)^{*} \mid \#(0, w)=\#(1, w)\right\}$ is not regular.

Solution (fooling set 0^{*}):

Consider the infinite set $F=\left\{\theta^{n} \mid n \geq 0\right\}$, or more simply $F=0^{*}$.
We claim that every pair of distinct strings in F has a distinguishing suffix.
Let x and y be arbitrary distinct strings in F.
The definition of F implies $x=\theta^{i}$ and $y=\theta^{j}$ for some integers $i \neq j$.
Let z be the string 1^{i}.
Then $x z=0^{i} 1^{i} \in L$.
But $y z=\theta^{j} 1^{i} \notin L$, because $i \neq j$.
So z is a distinguishing suffix for x and y.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular.
This is exactly the proof from the lecture notes for the canonical non-regular language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. The inner box is a proof that every pair of district strings in F has a distinguishing suffix.

Solution (fooling set 0^{*}):

For any natural number n, let $x_{n}=0^{n}$, and let $F=\left\{x_{n} \mid n \geq 0\right\}=0^{*}$.
Let i and j be arbitrary distinct natural numbers.
Let $z_{i j}$ be the string 1^{i}.
Then $x_{i} z_{i j}=0^{i} 1^{i} \in L$.
But $x_{j} z_{i j}=0^{j} 1^{i} \notin L$, because $i \neq j$.
So $z_{i j}$ is a distinguishing suffix for x_{i} and x_{j}.
We conclude that F is a fooling set for L.
Because F is infinite, L cannot be regular.
This is another way of writing exactly the same proof that emphasizes the counter intuition; any algorithm that recognizes L must count 0s.

Solution (reduction via closure): For the sake of argument, suppose L is regular.
Then the language $L \cap \theta^{*} 1^{*}=\left\{\theta^{n} 1^{n} \mid n \geq 0\right\}$ would also be regular, because regular languages are closed under intersection.

But we proved in class that $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular; we've reached a contradiction.
We conclude that L cannot be regular.
And this is why the proof for $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ also works verbatim for this language.

