1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: A directed graph G and a positive integer L. (The edges of G are not weighted, and G is not necessarily a dag.)
- Output: True if G contains a (simple) path of length L, and False otherwise. ${ }^{1}$
(a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:
- Input: A directed graph G.
- Output: The length of the longest path in G.
(b) Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:
- Input: A directed graph G.
- Output: The longest path in G
[Hint: You can use the magic box more than once.]

2. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices in S are connected by an edge in G. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph G and an integer k.
- Output: True if G has an independent set of size k, and False otherwise. ${ }^{2}$
(a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:
- Input: An undirected graph G.
- Output: The size of the largest independent set in G.
(b) Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:
- Input: An undirected graph G.
- Output: An independent set in G of maximum size.
[Hint: You can use the magic box more than once.]

[^0]
To think about later:

3. Formally, a proper coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1,2, \ldots, k\}$, for some integer k, such that $c(u) \neq c(v)$ for all $u v \in E$. Less formally, a valid coloring assigns each vertex of G a color, such that every edge in G has endpoints with different colors. The chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph G and an integer k.
- Output: True if G has a proper coloring with k colors, and False otherwise. ${ }^{3}$

Using this black box as a subroutine, describe an algorithm that solves the following coloring problem in polynomial time:

- Input: An undirected graph G.
- Output: A valid coloring of G using the minimum possible number of colors.
[Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.]

4. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: A boolean circuit K with n inputs and one output.
- Output: True if there are input values $x_{1}, x_{2}, \ldots, x_{n} \in\{$ True, False $\}$ that make K output True, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- Input: A boolean circuit K with n inputs and one output.
- Output: Input values $x_{1}, x_{2}, \ldots, x_{n} \in\{$ True, False $\}$ that make K output True, or None if there are no such inputs.
[Hint: You can use the magic box more than once.]

[^1]
[^0]: ${ }^{1}$ You already know how to solve this problem in polynomial time when the input graph G is a dag, but this magic box works for every input graph.
 ${ }^{2}$ It is not hard to solve this problem in polynomial time via dynamic programming when the input graph G is a tree, but this magic box works for every input graph.

[^1]: ${ }^{3}$ Again, it is not hard to solve this problem in polynomial time via dynamic programming when the input graph G is a tree, but this magic box works for every input graph.

