Recall that a proper k-coloring of a graph G is a function that assigns each vertex of G a "color" from the set $\{0,1,2, \ldots, k-1\}$ (or less formally, from any set of size k), such that for any edge $u v$, vertices u and v are assigned different "colors". The chromatic number of G is the smallest integer k such that G has a proper k-coloring.

1. A proper k-coloring of a graph G is balanced if each color is assigned to exactly the same number of vertices. Prove that it is NP-hard to decide whether a given graph G has a balanced 3 -coloring. [Hint: Reduce from the standard 3Color problem.]
2. Prove that the following problem is NP-hard: Given an undirected graph G, find any integer $k>374$ such that G has a proper coloring with k colors but G does not have a proper coloring with $k-374$ colors. For example, if the chromatic number of G is 10000 , then any integer between 10000 and 10373 is a correct answer.
3. A 5 -coloring is careful if the colors assigned to adjacent vertices are not only distinct, but differ by more than $1(\bmod 5)$. Prove that deciding whether a given graph has a careful 5 -coloring is NP-hard. [Hint: Reduce from the standard 5Color problem.]

A careful 5-coloring.
4. A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two types of bicoloring: In a weak bicoloring, the endpoints of each edge must use different sets of colors; however, these two sets may share one color. In a strong bicoloring, the endpoints of each edge must use distinct sets of colors; that is, they must use four colors altogether. Every strong bicoloring is also a weak bicoloring.
(a) Prove that it is NP-hard to determine whether a given graph has a weak bicoloring with three colors. [Hint: Reduce from the standard 3Color problem.]
(b) Prove that it is NP-hard to determine whether a given graph has a strong bicoloring with five colors. [Hint: Reduce from the standard 3Color (sic) problem!]

Left: A weak bicoloring of a 5-clique with four colors. Right A strong bicoloring of a 5-cycle with five colors.

