
CSCI 432/532, Spring 2025
Homework 7

Due Monday, March 10, 2025 at 11:59pm Mountain Time

Submission Requirements

• Type or clearly hand-write your solutions into a PDF format so that they are legible and
professional. Submit your PDF to the appropriate Canvas dropbox.

• Do not submit your first draft. Type or clearly re-write your solutions for your final
submission.

• You may work with a group of up to three students and submit one single document for
the group. Just be sure to list all group members at the top of the document.

• When possible, the homework will include at least one fully solved problem, similar
to that week’s assigned problems, together with the rubric we would use to grade this
problem if it appeared in an actual homework or exam. These model solutions show
our recommendations for structure, presentation, and level of detail in your homework
solutions. (Obviously, the actual content of your solutions won’t match the model solutions,
because your problems are different!)

Academic Integrity

Remember, you may access any resource in preparing your solution to the homework. However,
you must

• write your solutions in your own words, and

• credit every resource you use (for example: “Bob Smith helped me on problem 2. He took
this course at UM in Fall 2020”; “I found a solution to a problem similar to this one in the lec-
ture notes for a different course, found at this link: www.profzeno.com/agreatclass/lecture10”;
“I asked ChatGPT how to solve problem 1 part (c); “I put my solution for problem 1 part
(c) into ChatGPT to check that it was correct and it caught a missing case and suggested
some grammer fixes.”) If you use the provided LaTeX template, you can use the sources
environment for this. Ask if you need help!

Grading Rubrics

NP-hardness proof. 10 points =

+ 1 point for choosing a reasonable NP-hard problem X to reduce from.

– The Cook-Levin theorem implies that in principle one can prove NP-hardness by reduction
from any NP-hard problem. What we’re looking for here is a problem where a simple and
direct NP-hardness proof seems likely.

– You can use any of the NP-hard problems listed in the lecture notes (except the one you
are trying to prove NP-hard, of course).
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+ 2 for a structurally sound polynomial-time reduction. Specifically, the reduction must:

– take an arbitrary instance of the declared problem X and nothing else as input,

– transform that input into a corresponding instance of Y (the problem we’re trying to prove
NP-hard),

– transform the output of the oracle for Y into a reasonable output for X, and

– run in polynomial time.

(The output transformation is usually trivial.) This is strictly about the structure of the reduction
algorithm, not about its correctness. No credit for the rest of the problem if this is wrong.

+ 2 points for a correct polynomial-time reduction. That is, assuming a black-box algorithm that
solves Y in polynomial time, the proposed reduction actually solves problem X in polynomial
time.

+ 2 points for the “if" proof of correctness. (Every good instance of X is transformed into a good
instance of Y).

+ 2 points for the “only if" proof of correctness. (Every bad instance of X is transformed into a bad
instance of Y—note that you may prove this by proving that if your transformation produces a
good instance of X then it was given a good instance of Y).

+ 1 for writing “polynomial time".

• An incorrect but structurally sound polynomial-time reduction that still satisfies half of the
correctness proof is worth at most 5/10 (=1 for reasonable reduction source + 2 for structural
soundness +2 for the half of the proof).

• A reduction in the wrong direction is worth at most 1/10 (for choosing a reasonable problem).
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CSCI 432/532 Homework 7 (due March 10) Spring 2025

1. As we have seen, the 3Color problem takes in a graph and asks whether there is a way
to assign each vertex one of three colors so that every edge has endpoints of a different
color. We call such a coloring a full 3-coloring. Similarly, a 3-coloring of a graph G is called
an almost 3-coloring if every vertex has at most one neighbor with the same color. The
Almost3Color problem asks whether, given graph G, it has an almost 3-coloring.

(a) Is Almost3Color in NP? How do you know? (2 points)

(b) Draw an example graph that has an almost 3-coloring but not a full 3-coloring. (2
points)

(c) Here is a proposed proof that Almost3Color is NP-hard.

Solution: We reduce from 3Color. Given an arbitrary input graph G, we
construct a new graph H by attaching a clique of 4 vertices to every vertex
of G. Specifically, for each vertex v in G, the graph H contains three new
vertices v1, v2, v3, along with edges vv1, vv2, vv3, v1v2, v1v3, v2v3. Notice that this
transformation creates 3|V | new vertices and 6|V | new edges, so it can be done
in polynomial time.

Now, I claim that G has a full 3-coloring if and only if H has an almost
3-coloring. I show both directions of the implication.
⇒ Suppose G has a full 3-coloring using the colors red, yellow, and blue.

Extend this color assignment to the vertices of H by coloring each vertex v1 red,
each vertex v2 yellow, and each vertex v3 blue. With this assignment, each vertex
of H has at most one neighbor of the same color. Specifically, each vertex of G has
the same color as one of the vertices in this gadget, and the other two vertices in
v’s gadget have no neighbors with the same color.
⇐Now suppose H has an almost 3-coloring. Then G must have a full 3-coloring

because...um... ■

Give a graph G such that G does not have a full 3-coloring but the graph H constructed
by this reduction does have an almost 3-coloring. (5 points)

(d) Describe a small graph X with the following property: In every almost 3-coloring of X ,
every vertex of X has exactly one neighbor with the same color. (2 points)

(e) Using your graph X to change the transformation above, give a full, correct proof of
that Almost3Color is indeed NP-hard. (10 points—see rubric)
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CSCI 432/532 Homework 7 (due March 10) Spring 2025

Solved Problem

3. A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex
in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a
double-Hamiltonian tour.

b
d

c

f
g

a

e

This graph contains the double-Hamiltonian tour a�b�d�g�e�b�d�c� f �a�c� f �g�e�a.

Solution: We prove the problem is NP-hard with a reduction from the standard
Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a
new graph H by attaching a small gadget to every vertex of G. Specifically, for each
vertex v, we add two vertices v♯ and v♭, along with three edges vv♭, vv♯, and v♭v♯.

A vertex in G and the corresponding vertex gadget in H.

Now I claim that

G has a Hamiltonian cycleif and only ifH has a double-Hamiltonian tour.

=⇒ Suppose G contains a Hamiltonian cycle C = v1�v2� · · ·�vn�v1. We can
construct a double-Hamiltonian tour of H by replacing each vertex vi in C with
the following walk:

· · ·�vi�v♭i �v♯i �v♭i �v♯i �vi� · · ·

⇐= Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v
in the original graph G; the tour D must visit v exactly twice. Those two visits
split D into two closed walks, each of which visits v exactly once. Any walk
from v♭ or v♯ to any other vertex in H must pass through v. Thus, one of the two
closed walks visits only the vertices v, v♭, and v♯. Thus, if we remove the vertices
and edges in H \ G from D, we obtain a closed walk in G that visits every vertex
in G exactly once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial
time by brute force.

With more effort, we can construct a graph H that contains a double-Hamiltonian
tour that traverses each edge of H at most once if and only if G contains a Hamiltonian
cycle. For each vertex v in G we attach a more complex gadget containing five vertices
and eleven edges, as shown on the next page.
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CSCI 432/532 Homework 7 (due March 10) Spring 2025

A vertex in G, and the corresponding modified vertex gadget in H.

■

Rubric: 10 points, standard polynomial-time reduction rubric. This is not the only correct
solution.

The following is an emphincorrect solution.

Solution (Incorrect–self-loops): We attempt to prove the problem is NP-hard with
a reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected
graph. We construct a new graph H by attaching a self-loop every vertex of G. Given
any graph G, we can clearly construct the corresponding graph H in polynomial time.

An incorrect vertex gadget.

Now I claim that

G has a Hamiltonian cycleif and only ifH has a double-Hamiltonian tour.

=⇒ Suppose G has a Hamiltonian cycle v1�v2� · · ·�vn�v1. We can construct a
double-Hamiltonian tour of H by alternating between edges of the Hamiltonian
cycle and self-loops: v1�v1�v2�v2�v3� · · ·�vn�vn�v1.

/\⇐= Um. . .

Unfortunately, if H has a double-Hamiltonian tour, we cannot conclude that G has
a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour
in H uses any self-loops. The graph G shown below is a counterexample; it has a
double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

■
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