
35.4 Randomization and linear programming 1121 

   I clause  is satisûed   

so that     as long as at least one of the literals in the  th clause is set to . 
Since no literal appears more than once in the same clause, and since we assume 
that no variable and its negation appear in the same clause, the settings of the three 
literals in each clause are independent. A clause is not satisûed only if all three 
of its literals are set to , and so Pr clause  is not satisûed     . 
Thus, we have Pr clause  is satisûed      , and Lemma 5.1 on 
page 130 gives E     . Let  be the number of satisûed clauses overall, so 
that           . Then, we have 

E   E 
 

  

  

  

 

 
  

  

E    (by linearity of expectation) 

 
  

  

 

  

Since  is an upper bound on the number of satisûed clauses, the approximation 
ratio is at most   . 

Approximating weighted vertex cover using linear programming 

The minimum-weight vertex-cover problem takes as input an undirected graph 
   in which each vertex    has an associated positive weight . 

The weight    of a vertex cover     is the sum of the weights of its 
vertices:     

 
  . The goal is to ûnd a vertex cover of minimum 

weight. 
The approximation algorithm for unweighted vertex cover from Section 35.1 

won’t work here, because the solution it returns could be far from optimal for the 
weighted problem. Instead, we’ll ûrst compute a lower bound on the weight of the 
minimum-weight vertex cover, by using a linear program. Then we’ll <round= this 
solution and use it to obtain a vertex cover. 

Start by associating a variable  with each vertex    , and require that 
 equals either  or  for each    . The vertex cover includes  if and only if 
  . Then the constraint that for any edge , at least one of  and  must 

belong to the vertex cover can be expressed as     . This view gives 
rise to the following 0-1 integer program for ûnding a minimum-weight vertex 
cover: 



1122 Chapter 35 Approximation Algorithms 

minimize 
 

 

 (35.12) 

subject to 
     for each    (35.13) 

  for each    (35.14) 

In the special case in which all the weights  equal , this formulation is 
the optimization version of the NP-hard vertex-cover problem. Let’s remove the 
constraint that   and replace it by     , resulting in the 
following linear program: 

minimize 
 

 

 (35.15) 

subject to 
     for each    (35.16) 

   for each    (35.17) 
   for each    (35.18) 

We refer to this linear program as the linear-programming relaxation. Any fea- 
sible solution to the 0-1 integer program in lines (35.12)3(35.14) is also a feasible 
solution to its linear-programming relaxation in lines (35.15)3(35.18). Therefore, 
the value of an optimal solution to the linear-programming relaxation provides a 
lower bound on the value of an optimal solution to the 0-1 integer program, and 
hence a lower bound on the optimal weight in the minimum-weight vertex-cover 
problem. 

The procedure APPROX-MIN-WEIGHT-VC on the facing page starts with a so- 
lution to the linear-programming relaxation and uses it to construct an approximate 
solution to the minimum-weight vertex-cover problem. The procedure works as 
follows. Line 1 initializes the vertex cover to be empty. Line 2 formulates the 
linear-programming relaxation in lines (35.15)3(35.18) and then solves this linear 
program. An optimal solution gives each vertex  an associated value  , where 
    . The procedure uses this value to guide the choice of which vertices 

to add to the vertex cover  in lines 335: the vertex cover  includes vertex  if 
and only if    . In effect, the procedure <rounds= each fractional variable 
in the solution to the linear-programming relaxation to either  or  in order to ob- 
tain a solution to the 0-1 integer program in lines (35.12)3(35.14). Finally, line 6 
returns the vertex cover  . 

Theorem 35.6 
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time -approximation al- 
gorithm for the minimum-weight vertex-cover problem. 



35.4 Randomization and linear programming 1123 

APPROX-MIN-WEIGHT-VC  
1   
2 compute  , an optimal solution to the linear-programming relaxation 

in lines (35.15)3(35.18) 
3 for each vertex    
4 if     
5     
6 return  

Proof Because there is a polynomial-time algorithm to solve the linear program 
in line 2, and because the for loop of lines 335 runs in polynomial time, APPROX- 
MIN-WEIGHT-VC is a polynomial-time algorithm. 

It remains to show that APPROX-MIN-WEIGHT-VC is a -approximation algo- 
rithm. Let   be an optimal solution to the minimum-weight vertex-cover prob- 
lem, and let   be the value of an optimal solution to the linear-programming relax- 
ation in lines (35.15)3(35.18). Since an optimal vertex cover is a feasible solution 
to the linear-programming relaxation,   must be a lower bound on   , that is, 

      (35.19) 
Next, we claim that rounding the fractional values of the variables   in lines 335 
produces a set  that is a vertex cover and satisûes     . To see that  is 
a vertex cover, consider any edge   . By constraint (35.16), we know that 

    , which implies that at least one of   and   is at least . 
Therefore, at least one of  and  is included in the vertex cover, and so every edge 
is covered. 

Now we consider the weight of the cover. We have 
   

 

 

   

 
 

     

   

 
 

     

  
 
 

 
 

 

  
 
 

 
 
 

 

 

 

 
 
 

 (35.20) 



1124 Chapter 35 Approximation Algorithms 

Combining inequalities (35.19) and (35.20) gives 

        

and hence APPROX-MIN-WEIGHT-VC is a -approximation algorithm. 

Exercises 

35.4-1 
Show that even if a clause is allowed to contain both a variable and its negation, 
randomly setting each variable to  with probability  and to  with probabil- 
ity  still yields a randomized -approximation algorithm. 

35.4-2 
The MAX-CNF satisûability problem is like the MAX-3-CNF satisûability prob- 
lem, except that it does not restrict each clause to have exactly three literals. Give a 
randomized -approximation algorithm for the MAX-CNF satisûability problem. 

35.4-3 
In the MAX-CUT problem, the input is an unweighted undirected graph   

. We deûne a cut    as in Chapter 21 and the weight of a cut 
as the number of edges crossing the cut. The goal is to ûnd a cut of maximum 
weight. Suppose that each vertex  is randomly and independently placed into  
with probability  and into    with probability . Show that this algorithm 
is a randomized -approximation algorithm. 

35.4-4 
Show that the constraints in line (35.17) are redundant in the sense that remov- 
ing them from the linear-programming relaxation in lines (35.15)3(35.18) yields a 
linear program for which any optimal solution  must satisfy    for each 

   . 

35.5 The subset-sum problem 

Recall from Section 34.5.5 that an instance of the subset-sum problem is given 
by a pair , where  is a set        of positive integers and  is a 
positive integer. This decision problem asks whether there exists a subset of  that 
adds up exactly to the target value  . As we saw in Section 34.5.5, this problem is 
NP-complete. 

The optimization problem associated with this decision problem arises in prac- 
tical applications. The optimization problem seeks a subset of        


