
Quick review

What are the inputs to the max flow problem?
How fast can max flow be solved?

What does it mean for a problem to be in NP? In P?

What does it mean for a problem to be NP-hard?

directed graph w/
s
,
t EV

& C : Et IR*0 - capacities on
edges

Y Kyle+
Tara

TUE)OTHo) "almost lineara

1950s

J Taevent
Daniel

"Yes" answer is
X I solvable in poly time

Verifiable in poly time
J Kaleb + Weste

If solvable in poly time , then P = NP

Handling NP-Hardness

Handling NP-Hardness

Your problem is NP-hard. What to do?
1. Brute Force
2. Heuristics
3. Approximation Algorithms

NP

P

NP-hard

S
~ input small

[

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

00>
-

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example: If my CheapestEggsInMissoula algorithm is a 1.25-approximation algorithm,
the cost of the eggs it finds is at most 1.25 times the optimal cost.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example: If my CheapestEggsInMissoula algorithm is a 1.25-approximation algorithm,
the cost of the eggs it finds is at most 1.25 times the optimal cost.

I.e. If cheapest eggs in Missoula are $4.00/dozen, CheapestEggsInMissoula will find
eggs that is at most $2.50/dozen.

$51$4 . 00

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example: If my CheapestEggsInMissoula algorithm is a 1.25-approximation algorithm,
the cost of the eggs it finds is at most 1.25 times the optimal cost.

I.e. If cheapest eggs in Missoula are $4.00/dozen, CheapestEggsInMissoula will find
eggs that is at most $5.00/dozen.

Approximation Algorithms

ALG ≤ α OPT
Cost (size) of

algorithm’s solution.
Cost (size) of

optimal solution.
Approximation

Ratio

Example:

Approximation Algorithms

ALG ≤ α OPT
Cost (size) of

algorithm’s solution.
Cost (size) of

optimal solution.
Approximation

Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.

Approximation Algorithms

ALG ≤ α OPT
Cost (size) of

algorithm’s solution.
Cost (size) of

optimal solution.
Approximation

Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost (size) 746.125.

&

2

ALG

what do I know about Opt ?

746 . 125[1 . 12 OPT => 666 = OPT

Approximation Algorithms

ALG ≤ α OPT
Cost (size) of

algorithm’s solution.
Cost (size) of

optimal solution.
Approximation

Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost (size) 746.125.

 What do I know about OPT?

Approximation Algorithms

ALG ≤ α OPT
Cost (size) of

algorithm’s solution.
Cost (size) of

optimal solution.
Approximation

Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost (size) 746.125.

 Then, I know that 746.125 ≤ 1.12 OPT

Approximation Algorithms

ALG ≤ α OPT
Cost (size) of

algorithm’s solution.
Cost (size) of

optimal solution.
Approximation

Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost (size) 746.125.

 Then, I know that 746.125 ≤ 1.12 OPT
 ⇒ !"#.%&'

%.%& 	=	666.183	≤ OPT

Vertex Cover – Problem

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

3

#

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex CoverC

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

-

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

O

O

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

O

g

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

⑨

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

Which edge gets
selected next?

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover
x = 2

⑳ ~

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

M
*

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = ??

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

#of

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = ??

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

Discuss with a partner

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|
A vertex from each edge in 6’ must be part of every vertex cover.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

True or False?
Discuss with a partnerMable

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|
A vertex from each edge in 6’ must be part of every vertex cover.

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

If we selected fewer than one vertex per
edge, we would not have a vertex cover,
because that edge would not be covered!

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|
A vertex from each edge in 6’ must be part of every vertex cover.

⇒ In relation to OPT??

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|
A vertex from each edge in 6’ must be part of every vertex cover.

⇒ |6’| ≤ OPT

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|
A vertex from each edge in 6’ must be part of every vertex cover.

⇒ |6’| ≤ OPT

…ALG ≤ α OPT??

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|
A vertex from each edge in 6’ must be part of every vertex cover.

⇒ |6’| ≤ OPT

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|
A vertex from each edge in 6’ must be part of every vertex cover.

⇒ |6’| ≤ OPT
⇒ 2|6’| ≤ 2OPT

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

VC 2-approximation algorithm:
while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously
selected edges. Let 6’ be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 |6’|
A vertex from each edge in 6’ must be part of every vertex cover.

⇒ |6’| ≤ OPT
⇒ 2|6’| ≤ 2OPT
⇒ ALG ≤ 2OPT

Vertex Cover: Given graph . = (0, 2),
find smallest 0′ ⊆ 0 such that each
edge in 2 contains an end point in 0′.

Vertex Cover

-

C = 2

Vertex Cover – Improvement

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?

Vertex Cover – Improvement

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Vertex Cover – Improvement

Which of these would be easier to prove?

no

-

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Vertex Cover – Improvement

Try to find a graph where ALG = 2 OPT for this algorithm
challenge: find a class of graphs for n=2, 4, 6, … where ALG = 2 OPT

0-0

-0-0& :
#
%

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

ALG OPT

Vertex Cover – Improvement

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

ALG OPT

Vertex Cover – Improvement

|ALG|= 2": # ∉ ALG ⇒ all neighbors are
⟹ " edges selected ⟹ all 2" nodes
selected.
|OPT|= ": Fewer than " nodes selected
⟹ ∃ unselected edge.

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

∴ The best Vertex Cover
can be approximated is
within a factor of 2

Vertex Cover – Improvement

ALG OPT

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

The best Vertex Cover
can be approximated is
within a factor of 2

Vertex Cover – Improvement

ALG OPT True or false?
=>

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

∴ The best Vertex Cover
can be approximated is
within a factor of 2

Vertex Cover – Improvement

ALG OPT

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

∴ The best Vertex Cover
can be approximated is
within a factor of 2

Vertex Cover – Improvement

ALG OPT

VC Inapproximability:
• Cannot be approximated within a factor of 1.3606 unless P=NP.
• Cannot be approximated within any constant factor better than 2

unless the Unique Games Conjecture is false.
• Is approximable within 2 − ()* ()* +

& ()* + .

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

∴ The best Vertex Cover
can be approximated is
within a factor of 2

Vertex Cover – Improvement

ALG OPT

VC Inapproximability:
• Cannot be approximated within a factor of 1.3606 unless P=NP.
• Cannot be approximated within any constant factor better than 2

unless the Unique Games Conjecture is false.
• Is approximable within 2 − ()* ()* +

& ()* + .
How do you think we prove this?

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

∴ The best Vertex Cover
can be approximated is
within a factor of 2

Vertex Cover – Improvement

ALG OPT

VC Inapproximability:
• Cannot be approximated within a factor of 1.3606 unless P=NP.
• Cannot be approximated within any constant factor better than 2

unless the Unique Games Conjecture is false.
• Is approximable within 2 − ()* ()* +

& ()* + .

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT
Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

∴ The best Vertex Cover
can be approximated is
within a factor of 2

Vertex Cover – Improvement

ALG OPT

VC Inapproximability:
• Cannot be approximated within a factor of 1.3606 unless P=NP.
• Cannot be approximated within any constant factor better than 2

unless the Unique Games Conjecture is false.
• Is approximable within 2 − ()* ()* +

& ()* + .O

