VC-2-approximation(G):

while uncovered edge exists in G

select both vertices from uncovered edge f is O(g) \mathcal{X} f \mathcal{E} fWe say that an algorithm is an α -approximation for a problem if ALGs α OPT for all inputs. Answer the following questions with True or False.

1. VC-2-approximation always finds a vertex cover for input G.

2. VC-2-approximation always finds the optimal (smallest size) vertex cover for input G.

 VC-2-approximation is a 3-approximation for the smallest vertex cover problem.

4. VC-2-approximation is a 1.5-approximation for the smallest vertex cover problem.

Algrightarrow 2

OP7= 1

ALG \$ 1.50PT

241.5.1

Example:

$$U = \{1, 4, 7, 8, 10\}$$
$$S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$$

Example:

$$U = \{1, 4, 7, 8, 10\}$$

$$S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$$

$$\{\{1, 7, 8\}, \{4, 8, 10\}\}$$

Example:

 $U = \{1, 4, 7, 8, 10\}$ $S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$ $\{\{1, 7, 8\}, \{4, 8, 10\}\} \quad \{\{1, 4, 7\}, \{7, 8\}\} \quad \checkmark$

Example:

 $U = \{1, 4, 7, 8, 10\}$ $S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$ $\{\{1, 7, 8\}, \{4, 8, 10\}\}$ $\{\{1, 4, 7\}, \{7, 8\}\}$ $\{\{1, 4, 7, 8, 10\}\}$

Example:

$$U = \{1, 4, 7, 8, 10\}$$

$$S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$$

(of size x)

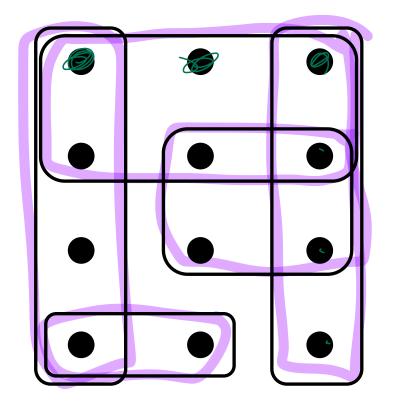
is set cover in NP?

$$\left\{ \{1, 7, 8\}, \{4, 8, 10\} \right\} \quad \left\{ \{1, 4, 7\}, \{7, 8\} \right\} \\ \left\{ \{1, 4, 7, 8, 10\} \right\}$$

Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Example:



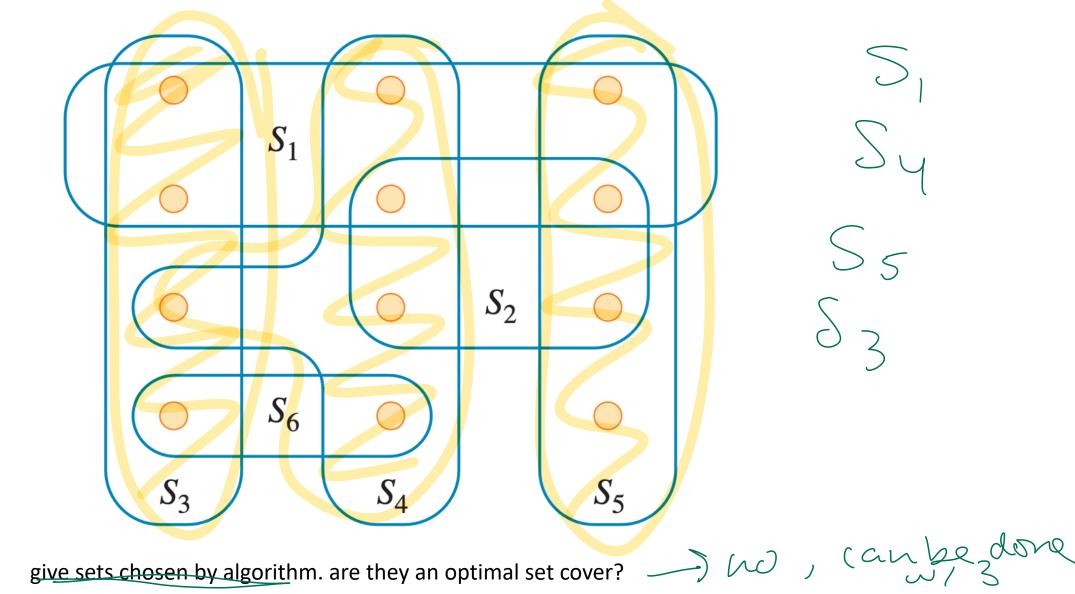
= 12 $|\mathcal{S}| = 12$

unat is smallest set cover?

Set Cover NP-hard

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Greedy Algorithm:



Greedy Algorithm:

- 1. Valid?
- 2. Polynomial Time?
- 3. Performance?

Greedy Algorithm:

- 1. Valid. Every element of universe will be included.
- 2. Polynomial Time. $O(|S|^2|U|)$.
- 3. Performance?

while element of universe not included
select S_i with largest number of excluded elements.

Goal: ALG $\leq \alpha$ OPT

Greedy Set Cover – Performance OPT = ?

while element of universe not included
select S_i with largest number of excluded elements.

$ALG \leq \alpha OPT$

ALG = # sets selected by the algorithm to cover all *n* elements.

OPT = # sets in an optimal solution to cover all *n* elements.

while element of universe not included
select S_i with largest number of excluded elements.

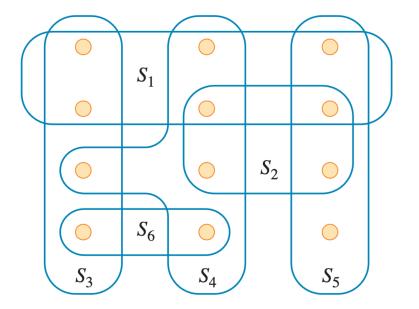
$ALG \leq \alpha OPT$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

while element of universe not included
select S_i with largest number of excluded elements.

\mathcal{U} \mathcal{Z} What are ALG and OPT for our example?



ALG $\leq \alpha$ OPT

ALG = # sets selected by the algorithm to cover all *n* elements.

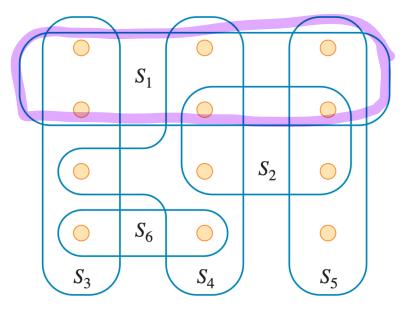
OPT = # sets in an optimal solution to cover all *n* elements.

while element of universe not included
select S_i with largest number of excluded elements.

ALG $\leq \alpha$ OPT

Suppose the universe contains n elements.

Let S be the set first set selected by the greedy algorithm. Can you say anything about |S|? Hint: in terms of *n* and OPT?



ALG = # sets selected by the algorithm to cover all n elements.

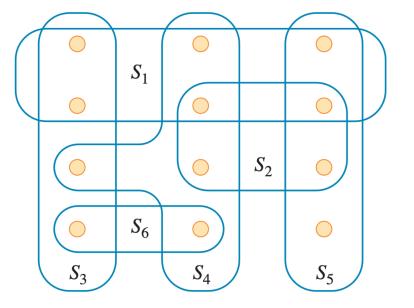
OPT = # sets in an optimal solution to cover all *n* elements.

while element of universe not included
select S_i with largest number of excluded elements.

ALG $\leq \alpha$ OPT

Suppose the universe contains n elements.

Let S be the set first set selected by the greedy algorithm. Can you say anything about |S|? a flex first iteration, $\downarrow excluded \leq$ $|S| \geq \frac{n}{OPT}$



Set Cover – Performance

ALG = # sets selected by the algorithm to cover all *n* elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is: $n_t \le n_{t-1} - \frac{n_{t-1}}{\mathsf{OPT}} = n_{t-1} \left(1 - \frac{1}{\mathsf{OPT}} \right) \le n \left(1 - \frac{1}{\mathsf{OPT}} \right)^t$ Accepting that $1 - x < e^{-x}$ for all $x \neq 0$, $n_t \le n \left(1 - \frac{1}{\mathsf{OPT}}\right)^t < n \left(e^{-\frac{1}{\mathsf{OPT}}}\right)^t = n e^{-\frac{t}{\mathsf{OPT}}}$ $OPT \ln n$ If $t = OPT \ln n$, $n_t < ne^{-OPT} = 1$, which means that no elements remain.

So, the universe is covered after at most $t = OPT \ln n$ iterations.

Set Cover – Inapproximability

It turns out that Set Cover cannot be approximated within the bound of $(1 - o(1)) \ln n$, unless P = NP.