"Modern cryptography is one great example of the incredible elonomic consequences of curiosity-driven, preoretical research."

-Avi Wigderson, Mah + Computation

P: problems solvable in polynomial time

<u>Encryption</u> Alice has message m to send to Bob over Unsecure chapted

let Enc and Dec be algorithms frat take in and return strings

Keybern k cipnonext Arice MEnce Dec M Bob Eve KeyGen: generates random key k

Verchoffs' Principle: System must be secure even if Eve has knowledge of all algorithms.

-> Security of system should be whendrated in Key, not algorithms.

$= M \qquad O \oplus K = X$

Property 2: security

Whatever is knowable about m given C is giso knowable wimout C.

Eavesdrop $(m \in \{0, 13^{\circ}\})$:

K = random & ZO,13² return c = K @m

	EA	vesdrop(010):	EAVESDROP(11):			
Pr	k	output $c = k \oplus 010$	Pr	k	output $c = k \oplus 111$	
1/8	000	010	1/8	000	111	suitorm
$\frac{1}{8}$	001	011	$\frac{1}{8}$	001	110	dist. on
$\frac{1}{8}$	010	000	$\frac{1}{8}$	010	101	- M
$\frac{1}{8}$	011	001	¥8	011	100	
y_8	100	110	¥8	100	011	
$\frac{1}{8}$	101	111	$\frac{1}{8}$	101	010	
$\frac{1}{8}$	110	100	$\frac{1}{8}$	110	001	
$\frac{1}{8}$	111	101	$\frac{1}{8}$	111	000	
Eau	res Ke	.drop2(m = random e hvin c, = k	,, mz ≥0, ⊕m	({ { 13 ⁷ 1,)	$(2^{2})^{2}$) m ₂
CIE	ÐC	$2 = (X \oplus N)$,) Ø	(¥	(m_z)	
		- (MA 40))a(V (0 is $>$	Pomm Al

= M, @(K@K) @mz

assoc. of O

 $= m, \oplus O^{\lambda} \oplus m_{2}$

 $= m_1 \oplus m_2$

 $IF \lambda = 2$, $C_1 \Theta C_2 = 11$

 11
 00
 01
 10
 11

 00
 11
 10
 01
 11

 00
 0
 10
 00
 11

One-time Pad

- One-time use of &

-(Gu(K) = (u(m) -)

- , f we could send k securely, any not send in securely?

(Computational) Property 2

Whatever is efficiently computable about m given (is also efficiently computable without c.

RSA Eucryption

