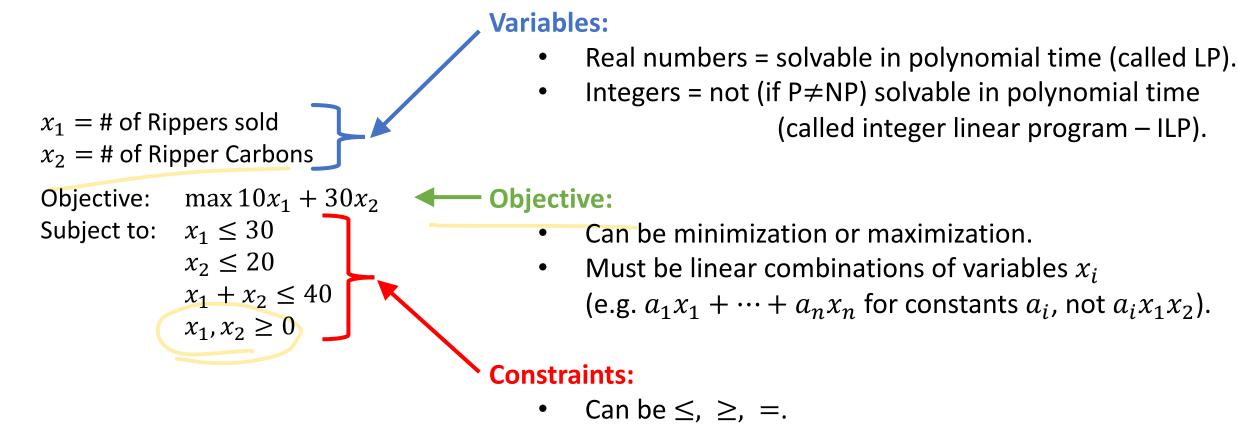
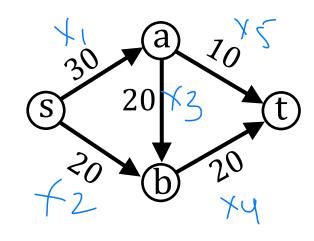
Linear Program (LP)



• Must be linear combinations of variables.

Maximum Flow Problem: Suppose we have the flow network below where each edge is labeled with its capacity. Give an LP whose solution is an s-t flow of maximum size.



vars: one for each edge - flow objective: max xy + x5 $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}, \chi_{7}, 0$ zints: $\chi_1 \leq 30$ $\chi_2 \leq 20$ (apacet) fiour X3+X5=X1 conservations Xy = X3+X2

<u>**Maximum Flow Problem</u></u>: Given a graph G=(V,E) with special nodes s,t and capacity function c: E \to \mathbb{R}^{\geq 0}, an LP for finding the maximum flow:</u>** <u>**Maximum Flow Problem</u></u>: Given a graph G=(V,E) with special nodes s,t and capacity function c: E \to \mathbb{R}^{\geq 0}, an LP for finding the maximum flow:</u>**

variables:

objective:

constraints:

LP Standard Form

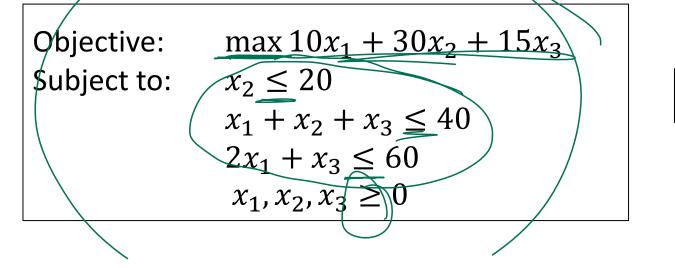
Objective:
$$\max 10x_1 + 30x_2 + 15x_3$$

Subject to: $x_2 \le 20$
 $x_1 + x_2 + x_3 \le 40$
 $2x_1 + x_3 \le 60$
 $x_1, x_2, x_3 \ge 0$

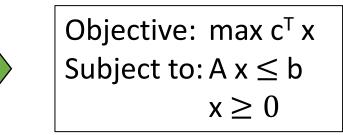
Objective: max
$$c^T x \ge 0$$

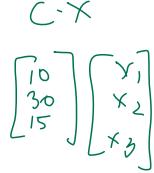
Subject to: $Ax \ge b$
 $x \ge 0$
Matrix A

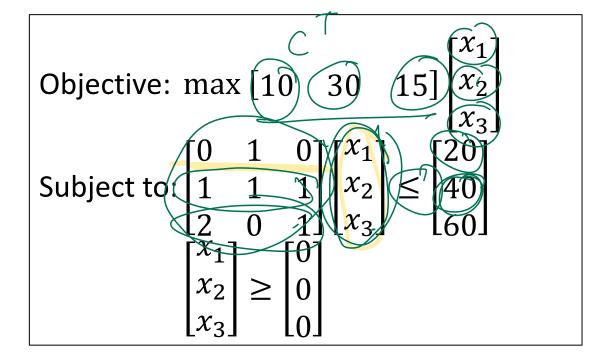
LP Standard Form



 $Max |0x_{1}+30x_{2}+15x_{3}$ s.t. $x_{2} \leq 20$ $\begin{array}{c} \chi_{1} + \chi_{2} + \chi_{3} \leq 40\\ \chi_{1} + \chi_{3} \leq 60 \end{array}$



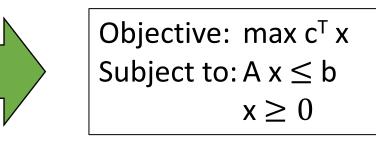




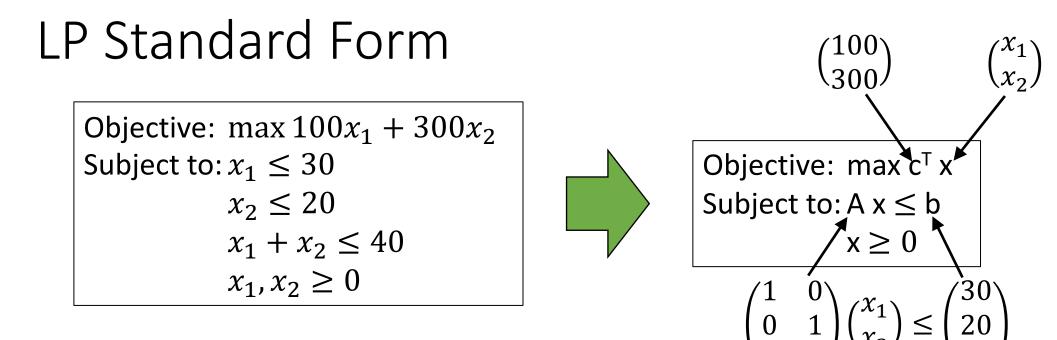
LP Standard Form

 $x_1, x_2, x_3 \ge 0$

Objective: $\max 10x_1 + 30x_2 + 15x_3$ Subject to: $x_2 \le 20$ $x_1 + x_2 + x_3 \le 40$



Is A always a square matrix? Silently hold up 1 for yes and 2 for no. Then check in with neighbor. Objective: max $\begin{bmatrix} 10 & 30 & 15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ Subject to: $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \le \begin{bmatrix} 20 \\ 40 \\ 40 \\ x_3 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$



2.

1.

3.

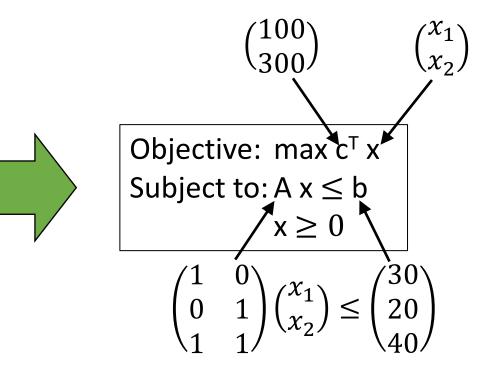
4.

LP Standard Form Objective: $\max 100x_1 + 300x_2$ Subject to: $x_1 \le 30$ $x_2 \le 20$

 $x_2 \ge 20$ $x_1 + x_2 \le 40$ $x_1, x_2 \ge 0$

Every LP can be turned into standard form.

- 1. Minimization \rightarrow Maximization: ?
- 2. \geq Constraints \rightarrow \leq :
- 3. Equality Constraints $\rightarrow \leq$:
- 4. Unrestricted sign



LP Standard Form

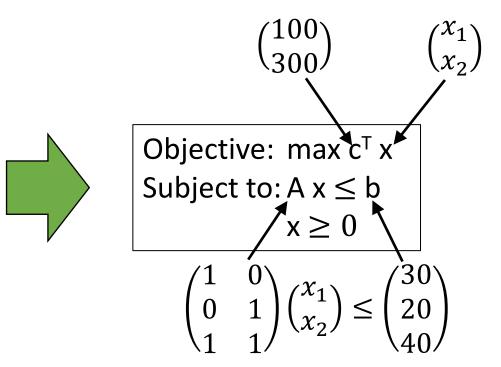
Objective: $\max 100x_1 + 300x_2$ Subject to: $x_1 \le 30$ $x_2 \le 20$ $x_1 + x_2 \le 40$ $x_1, x_2 \ge 0$

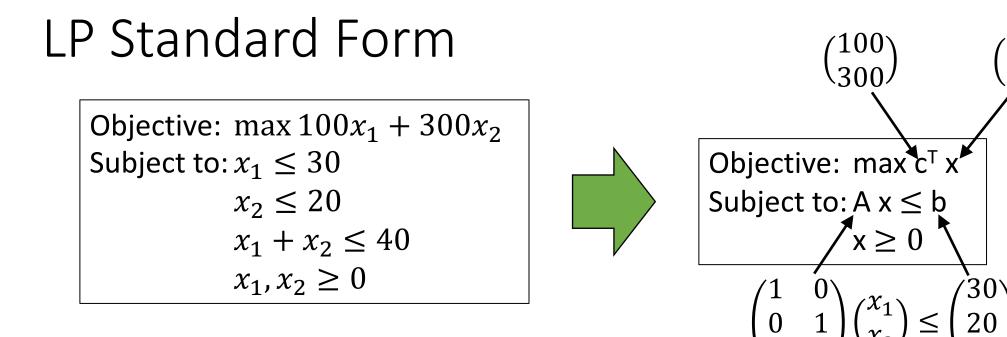
Every LP can be turned into standard form.

1. Minimization \rightarrow Maximization:

 $\min \alpha x_1 + \beta x_2$

- 2. \geq Constraints \rightarrow \leq :
- 3. Equality Constraints $\rightarrow \leq$:
- 4. Unrestricted sign





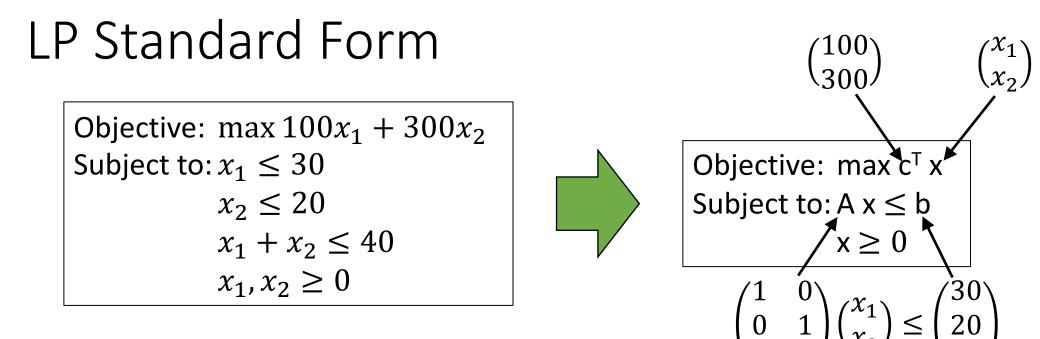
1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

2. \geq Constraints \rightarrow \leq :

X75 -X2-5

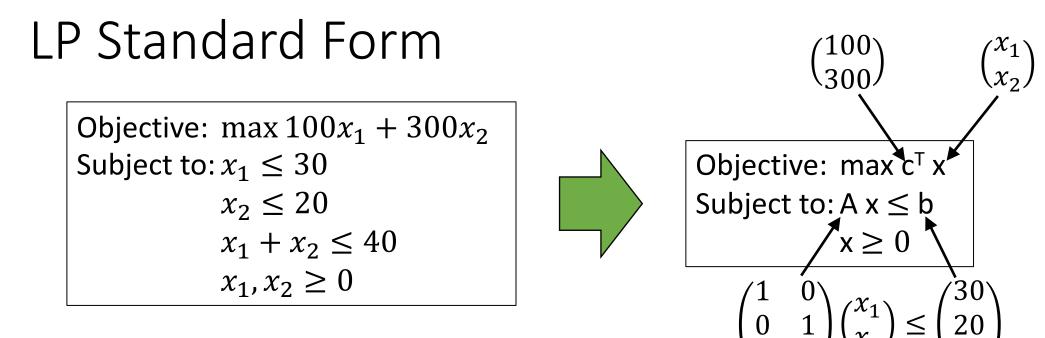
- 3. Equality Constraints $\rightarrow \leq$:
- 4. Unrestricted sign



1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

- 2. \geq Constraints $\rightarrow \leq$: ?
- 3. Equality Constraints $\rightarrow \leq$:
- 4. Unrestricted sign



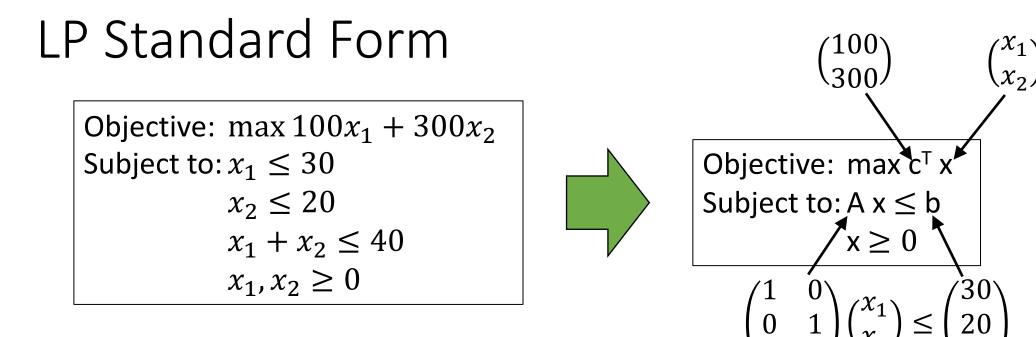
1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

2. \geq Constraints \rightarrow \leq :

 $x_1 + x_2 \ge \alpha$

- 3. Equality Constraints $\rightarrow \leq$:
- 4. Unrestricted sign



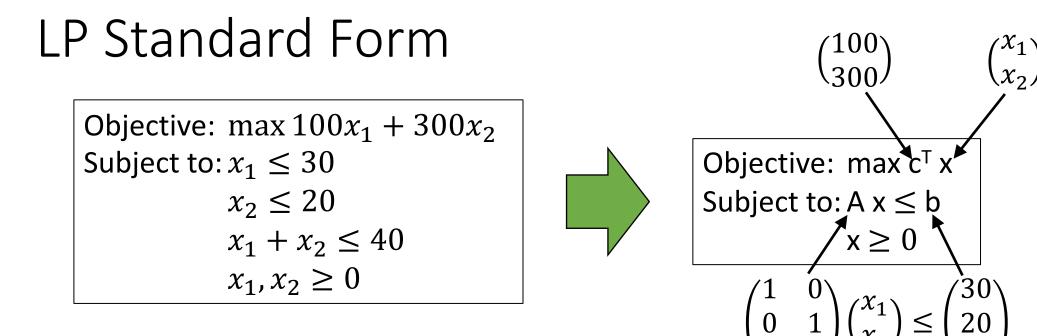
1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

2. \geq Constraints \rightarrow \leq : Negate inequality.

$$x_1 + x_2 \ge \alpha \to -x_1 - x_2 \le -\alpha$$

- 3. Equality Constraints $\rightarrow \leq$:
- 4. Unrestricted sign



1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

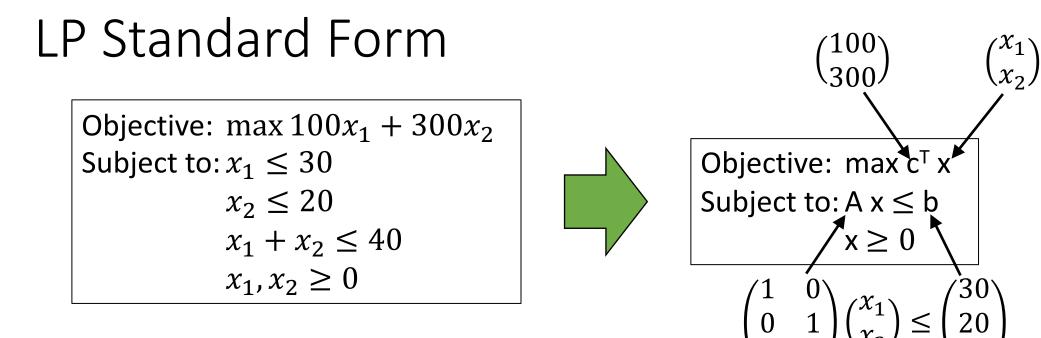
2. \geq Constraints $\rightarrow \leq$: Negate inequality.

$$x_1 + x_2 \ge \alpha \to -x_1 - x_2 \le -\alpha$$

3. Equality Constraints $\rightarrow \leq$:

$$x_1 + x_2 = \alpha$$

4. Unrestricted sign



1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

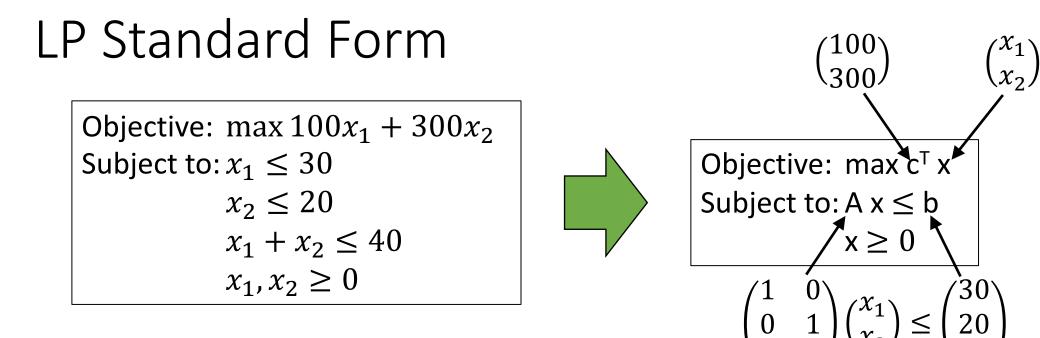
2. \geq Constraints \rightarrow \leq : Negate inequality.

 $x_1 + x_2 \ge \alpha \to -x_1 - x_2 \le -\alpha$

3. Equality Constraints $\rightarrow \leq$: Introduce \geq and \leq constraints.

$$x_1 + x_2 = \alpha \rightarrow x_1 + x_2 \ge \alpha \text{ and } x_1 + x_2 \le \alpha$$

4. Unrestricted sign



1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

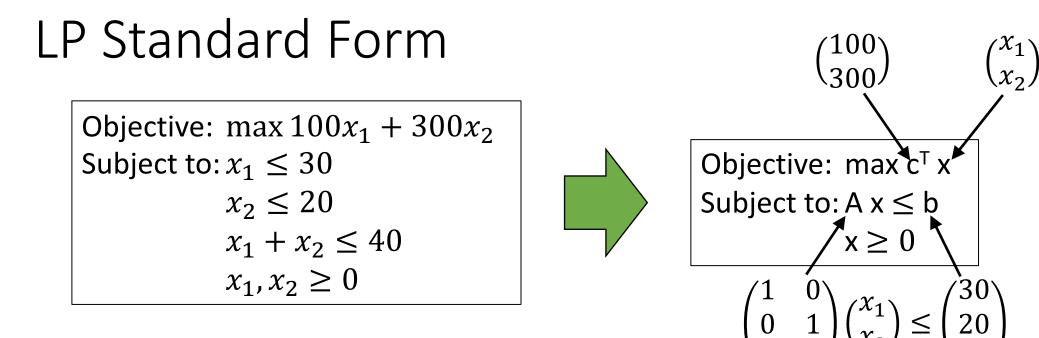
2. \geq Constraints $\rightarrow \leq$: Negate inequality.

 $x_1 + x_2 \ge \alpha \to -x_1 - x_2 \le -\alpha$

3. Equality Constraints $\rightarrow \leq$: Introduce \geq and \leq constraints.

 $x_1 + x_2 = \alpha \rightarrow x_1 + x_2 \ge \alpha$ and $x_1 + x_2 \le \alpha$

4. Unrestricted sign x_1



1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

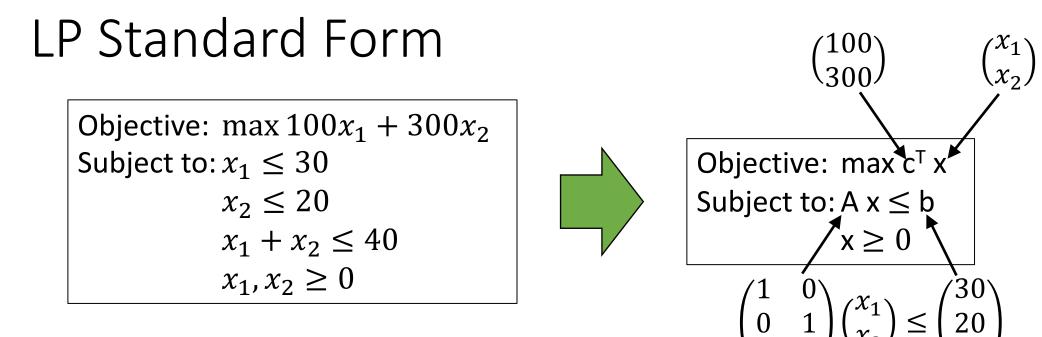
2. \geq Constraints $\rightarrow \leq$: Negate inequality.

 $x_1 + x_2 \ge \alpha \to -x_1 - x_2 \le -\alpha$

3. Equality Constraints $\rightarrow \leq$: Introduce \geq and \leq constraints.

 $x_1 + x_2 = \alpha \rightarrow x_1 + x_2 \ge \alpha$ and $x_1 + x_2 \le \alpha$

4. Unrestricted sign x_1 : Introduce $x'_1 \ge 0$, $x''_1 \ge 0$



1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

$$\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$$

2. \geq Constraints \rightarrow \leq : Negate inequality.

 $x_1 + x_2 \ge \alpha \to -x_1 - x_2 \le -\alpha$

3. Equality Constraints $\rightarrow \leq$: Introduce \geq and \leq constraints.

 $x_1 + x_2 = \alpha \rightarrow x_1 + x_2 \ge \alpha$ and $x_1 + x_2 \le \alpha$ how to recover x_1 ?

4. Unrestricted sign x_1 : Introduce $x'_1 \ge 0$, $x''_1 \ge 0$ Change constraints $x_1 + x_2 \le \alpha \rightarrow x'_1 - x''_1 + x_2 \le \alpha$

LP Standard Form

Objective: $\max 100x_1 + 300x_2$ Subject to: $x_1 \le 30$ $x_2 \le 20$ $x_1 + x_2 \le 40$ $x_1, x_2 \ge 0$ $\begin{pmatrix} 100\\ 300 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix}$ Objective: max c^T x Subject to: A x \leq b $x \geq 0$ $\begin{pmatrix} 1 & 0\\ 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \leq \begin{pmatrix} 30\\ 20\\ 10 \end{pmatrix}$

Every LP can be turned into standard form.

1. Minimization \rightarrow Maximization: Multiply objective coefficients by -1.

 $\min \alpha x_1 + \beta x_2 \to \max -\alpha x_1 - \beta x_2$

2. \geq Constraints \rightarrow \leq : Negate inequality.

 $x_1 + x_2 \ge \alpha \to -x_1 - x_2 \le -\alpha$

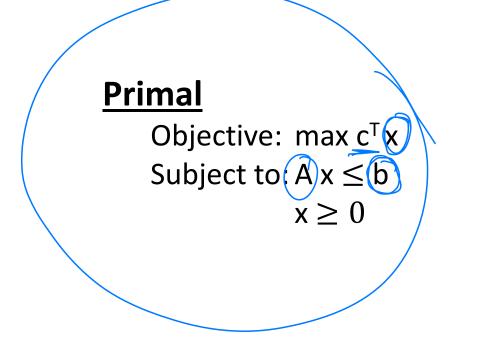
3. Equality Constraints $\rightarrow \leq$: Introduce \geq and \leq constraints.

 $x_1 + x_2 = \alpha \rightarrow x_1 + x_2 \ge \alpha$ and $x_1 + x_2 \le \alpha$

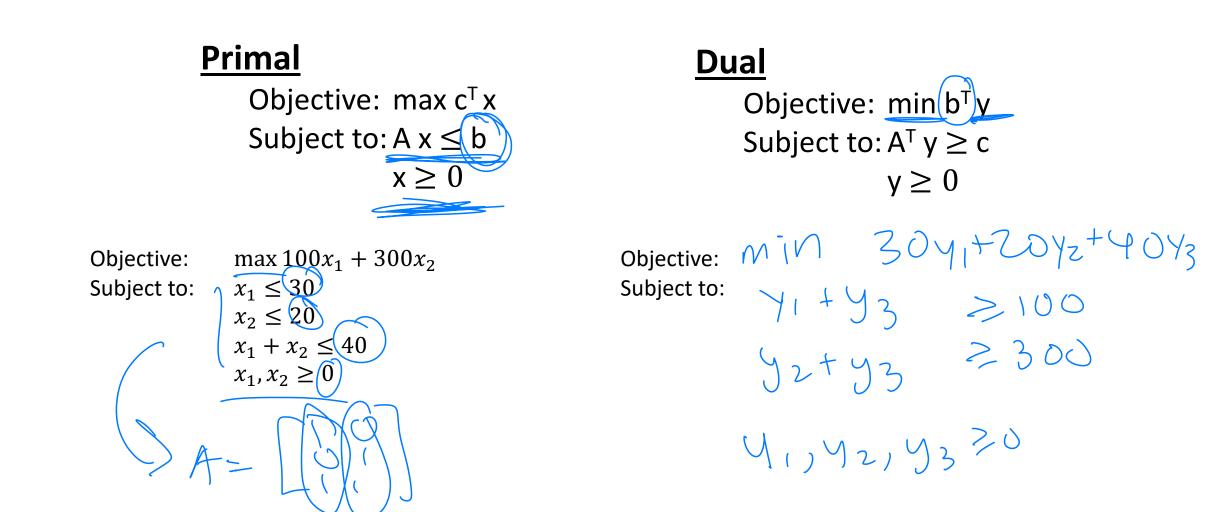
4. Unrestricted sign x_1 : Introduce $x'_1 \ge 0$, $x''_1 \ge 0$ Change constraints $x_1 + x_2 \le \alpha \rightarrow x'_1 - x''_1 + x_2 \le \alpha$

d = # Varsn = # constraints

> how much bigger did we make our LP?



Dual Objective: min $b^{T}y$ Subject to $A^{T}y \ge c$ $y \ge 0$



Primal

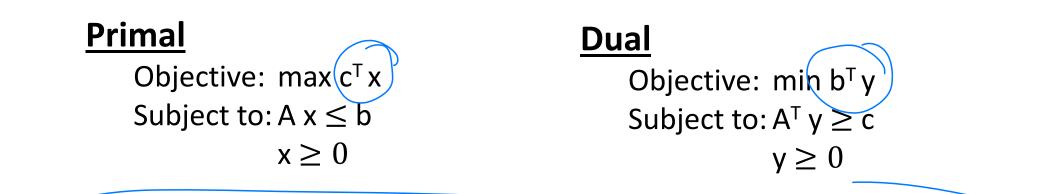
Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

<u>Dual</u>

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

Objective: Subject to: $\max 100x_{1} + 300x_{2}$ $x_{1} \leq 30$ $x_{2} \leq 20$ $x_{1} + x_{2} \leq 40$ $x_{1}, x_{2} \geq 0$

Objective: $\min 30y_1 + 20y_2 + 40y_3$ Subject to: $y_1 + y_3 \ge 100$ $y_2 + y_3 \ge 300$ $y_1, y_2, y_3 \ge 0$



<u>Strong Duality Theorem:</u> If x^* is an optimal solution for the primal LP,

then there is an optimal solution y^* for its dual such that

$$\vec{c} \cdot x^* = y^* \cdot b.$$

 $x_1 = #$ of Rippers sold in a day $x_2 = #$ of Ripper Carbons sold in a day $x_3 = #$ of Ripper Jrs sold in a day

Objective: $\max 10x_1 + 30x_2 + 15x_3$ Subject to: $x_2 \le 20$ $x_1 + x_2 + x_3 \le 40$ $2x_1 + x_3 \le 60$ $x_1, x_2, x_3 \ge 0$ $x_1 = #$ of Rippers sold in a day $x_2 = #$ of Ripper Carbons sold in a day $x_3 = #$ of Ripper Jrs sold in a day

Objective: $\max 10x_1 + 30x_2 + 15x_3$ Subject to: $x_2 \le 20$ $x_1 + x_2 + x_3 \le 40$ $2x_1 + x_3 \le 60$ $x_1, x_2, x_3 \ge 0$ Linear combinations of constraints are also valid constraints!

Linear combinations of $x_1 = #$ of Rippers sold in a day constraints are also valid $x_2 =$ # of Ripper Carbons sold in a day constraints! $x_3 = \#$ of Ripper Jrs sold in a day $: 2x_2 \leq 40$ $\max 10x_1 + 30x_2 + 15x_3$ Objective: Subject to: $x_2 \leq 20$ X2 520 AHB $x_1 + x_2 + x_3 \le 40$ Β $2x_1 + x_3 \le 60$ С $\dot{x}_1 + \dot{x}_2 + \dot{x}_3 \leq UO$ $x_1, x_2, x_3 \ge 0$ 15A+15B:) $15x_2 \le 300$ $x_2 + 2x_2 + x_3 \le 60$ T5x1+ 15x2+ 15x2 5600 $|5x_1+30x_2+15x_3 = 900$ 10×1+30×2+15×3 (900

Objective:	$\max 10x_1 + 30x_2 +$	$15r_{o}$	Mu
Subject to:	$x_2 \le 20$	A	<i>y</i> ₁
	$x_1 + x_2 + x_3 \le 40$	В	y_2
	$2x_1 + x_3 \le 60$	С	γ_3

Multiplier	Constraint
<i>y</i> ₁	$x_2 \leq 20$
y ₂	$x_1 + x_2 + x_3 \le 40$
<i>y</i> ₃	$2x_1 + x_3 \le 60$

 y_1 (Constraint_A) + y_2 (Constraint_B) + y_3 (Constraint_C)

 Objective:
 $\max 10x_1 + 30x_2 + 15x_3$

 Subject to:
 $x_2 \le 20$ A

 $x_1 + x_2 + x_3 \le 40$ B

 $2x_1 + x_3 \le 60$ C

Multiplier	Constraint
<i>y</i> ₁	$x_2 \leq 20$
<i>y</i> ₂	$x_1 + x_2 + x_3 \le 40$
<i>y</i> ₃	$2x_1 + x_3 \le 60$

 $\begin{array}{l} y_1(\text{Constraint}_A) + y_2(\text{Constraint}_B) + y_3(\text{Constraint}_C) \\ y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \leq 20y_1 + 40y_2 + 60y_3 \\ (y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \leq 20y_1 + 40y_2 + 60y_3 \\ 10x_1 + 30x_2 + 15x_3 \leq 20y_1 + 40y_2 + 60y_3, \\ \begin{array}{c} \text{If:} & y_2 + 2y_3 \geq 10 \\ & y_1 + y_2 \geq 30 \\ & y_2 + y_3 \geq 15 \\ & y_1, y_2, y_3 \geq 0 \end{array} \end{array}$

Objective: Subject to:	$ \max 10x_1 + 30x_2 + 15x_3 x_2 \le 20 $ A $x_1 + x_2 + x_3 \le 40 $ B	Multiplier	Constraint	
		Δ	y_1	$x_2 \le 20$
		B	y ₂	$x_1 + x_2 + x_3 \le 40$
	$2x_1 + x_3 \le 60$	С	<i>y</i> ₃	$2x_1 + x_3 \le 60$

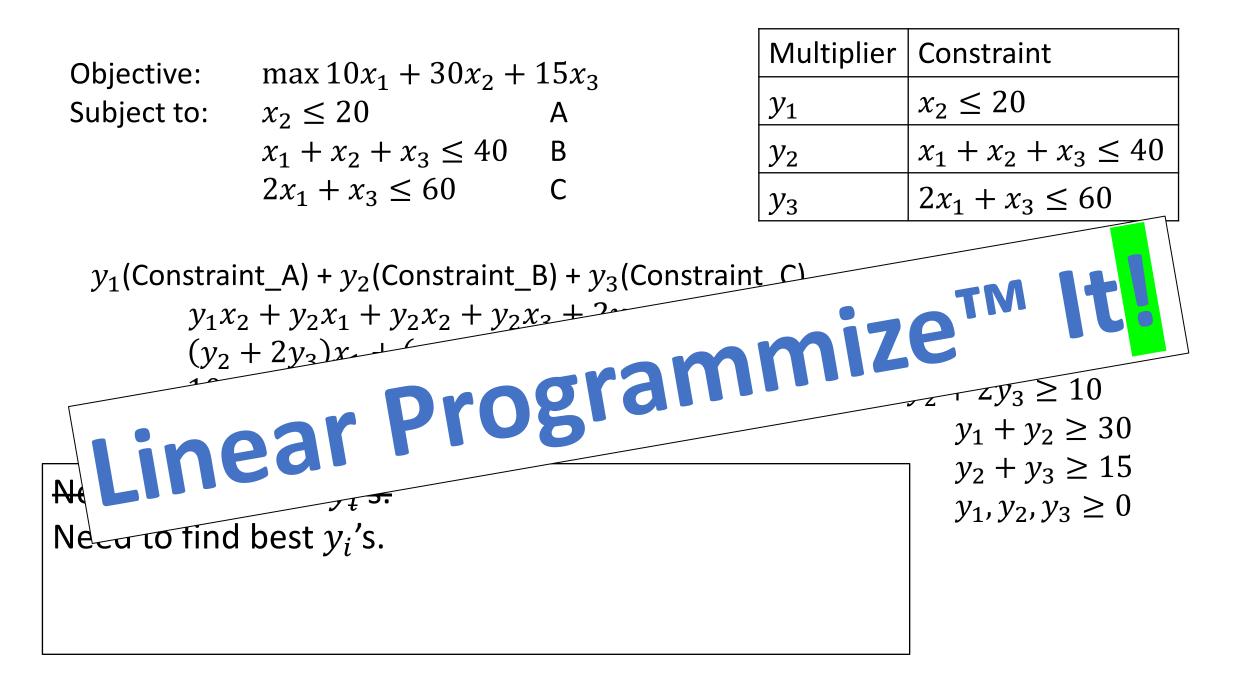
 $y_{1}(\text{Constraint}_A) + y_{2}(\text{Constraint}_B) + y_{3}(\text{Constraint}_C)$ $y_{1}x_{2} + y_{2}x_{1} + y_{2}x_{2} + y_{2}x_{3} + 2y_{3}x_{1} + y_{3}x_{3} \le 20y_{1} + 40y_{2} + 60y_{3}$ $(y_{2} + 2y_{3})x_{1} + (y_{1} + y_{2})x_{2} + (y_{2} + y_{3})x_{3} \le 20y_{1} + 40y_{2} + 60y_{3}$ $10x_{1} + 30x_{2} + 15x_{3} \le 20y_{1} + 40y_{2} + 60y_{3}, \quad \text{If:} \quad y_{2} + 2y_{3} \ge 10$ $y_{1} + y_{2} \ge 30$ $y_{2} + y_{3} \ge 15$ $y_{1}, y_{2}, y_{3} \ge 0$

Objective: Subject to:	$\max 10x_1 + 30x_2 + 15x_3$ $x_2 \le 20 \qquad A$ $x_1 + x_2 + x_3 \le 40 \qquad B$	Multiplier	Constraint	
		Δ	<i>y</i> ₁	$x_2 \leq 20$
		B	y_2	$\frac{x_1}{x_1 + x_2 + x_3} \le 40$
	$2x_1 + x_3 \le 60$	С	<i>y</i> ₃	$2x_1 + x_3 \le 60$

 y_1 (Constraint_A) + y_2 (Constraint_B) + y_3 (Constraint_C) $y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3$ $(y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3$ $10x_1 + 30x_2 + 15x_3 \le 20y_1 + 40y_2 + 60y_3$, If: $y_2 + 2y_3 \ge 10$ $y_1 + y_2 \ge 30$ $y_2 + y_3 \ge 15$ Need to find valid y_i 's. $y_1, y_2, y_3 \ge 0$ $y_1 = 10, y_2 = 20, y_3 = 10 \implies \text{objective} \le 1600$

Objective: Subject to:	$\max 10x_1 + 30x_2 + 15x_3$ $x_2 \le 20 \qquad A$ $x_1 + x_2 + x_3 \le 40 B$	$15r_{o}$	Multiplier	Constraint
		Δ	y_1	$x_2 \leq 20$
		В	<i>y</i> ₂	$\frac{-}{x_1 + x_2 + x_3} \le 40$
	$2x_1 + x_3 \le 60$	С	<i>y</i> ₃	$2x_1 + x_3 \le 60$

 y_1 (Constraint_A) + y_2 (Constraint_B) + y_3 (Constraint_C) $y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3$ $(y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 \pm 60y_3$ $10x_1 + 30x_2 + 15x_3 \le 20y_1 + 40y_2 + 60y_3$, If: $y_2 + 2y_3 \ge 10$ $y_1 + y_2 \ge 30$ $y_2 + y_3 \ge 15$ Need to find valid y_i 's. $y_1, y_2, y_3 \ge 0$ Need to find best y_i 's.



Objective: $\max 10x_1 + 30x_2 + 15x_3$ Objective:Subject to: $x_2 \le 20$ ASubject to: $x_1 + x_2 + x_3 \le 40$ B $2x_1 + x_3 \le 60$ C

 y_1 (Constraint_A) + y_2 (Constraint_B) + y_3 (Constraint_C) $y_1x_2 + y_2x_1 + y_2x_2 + y_2x_3 + 2y_3x_1 + y_3x_3 \le 20y_1 + 40y_2 + 60y_3$ $(y_2 + 2y_3)x_1 + (y_1 + y_2)x_2 + (y_2 + y_3)x_3 \le 20y_1 + 40y_2 + 60y_3$ $10x_1 + 30x_2 + 15x_3 \le 20y_1 + 40y_2 + 60y_3$, If: $y_2 + 2y_3 \ge 10$ $y_1 + y_2 \ge 30$ $y_2 + y_3 \ge 15$ Need to find valid y_i 's. $y_1, y_2, y_3 \ge 0$ Need to find best y_i 's.

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

Objective: max
$$\begin{bmatrix} 10 & 30 & 15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Subject to: $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \le \begin{bmatrix} 20 \\ 40 \\ 60 \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Objective: min $\begin{bmatrix} 20 & 40 & 60 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ Subject to: $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \ge \begin{bmatrix} 10 \\ 30 \\ 15 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem:</u> The dual of a dual is the original primal.

Proof: ?

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem</u>: The dual of a dual is the original primal.

Proof:

Objective: min $b^T y$ Subject to: $A^T y \ge c \rightarrow y \ge 0$ Standard Form

<u>Primal</u>

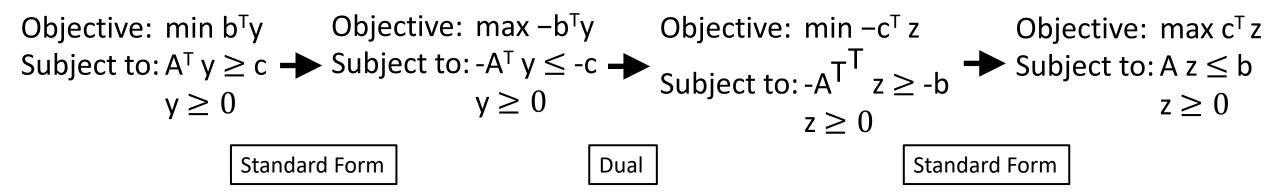
Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem:</u> The dual of a dual is the original primal.

Proof:



<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

Proof:

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

Proof:

$c^T \overline{x} \leq$

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

Proof:

 $c^{T}\overline{x} \leq (A^{T}\overline{y})^{T}\overline{x}$ Since $A^{T}y \geq c$

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

Proof:

$$c^{\mathsf{T}}\overline{x} \leq (\mathsf{A}^{\mathsf{T}}\overline{y})^{\mathsf{T}}\overline{x} = (\overline{y}^{\mathsf{T}}\mathsf{A})\overline{x}$$

Since transpose of multiplication is multiplication of transposes (reversed)

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

Proof:

$$c^{\mathsf{T}}\overline{x} \leq (A^{\mathsf{T}}\overline{y})^{\mathsf{T}}\overline{x} = (\overline{y}^{\mathsf{T}}A) \overline{x} = \overline{y}^{\mathsf{T}}(A \overline{x})$$

Matrix multiplication is associative.

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

Proof:

$$c^{T}\overline{x} \leq (A^{T}\overline{y})^{T}\overline{x} = (\overline{y}^{T}A)\overline{x} = \overline{y}^{T}(A\overline{x}) \leq \overline{y}^{T}b$$

Since $A x \leq b$

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

Proof:

$$c^{\mathsf{T}}\overline{x} \leq (A^{\mathsf{T}}\overline{y})^{\mathsf{T}}\overline{x} = (\overline{y}^{\mathsf{T}}A) \overline{x} = \overline{y}^{\mathsf{T}}(A \overline{x}) \leq \overline{y}^{\mathsf{T}} b = b^{\mathsf{T}}\overline{y}$$

Since b and \overline{y} are 1-dimensional vectors.