CSCI 432/532, Spring 2024 Problem Session 9

- 1. Let *M* be an arbitrary Turing machine. Prove the following claims.
 - (a) There is a Turing machine M^R such that

$$ACCEPT(M^R) = REJECT(M)$$

and

$$Reject(M^R) = Accept(M).$$

(b) There is a Turing machine M^A such that

$$Accept(M^A) = Accept(M)$$

and

$$Reject(M^A) = \emptyset.$$

(c) There is a Turing machine M^H such that

$$Accept(M^H) = Halt(M)$$

and

$$Reject(M^H) = \emptyset.$$

- 2. Let SelfAccept = $\{\langle M \rangle : M \text{ accepts } \langle M \rangle \}$. Prove that SelfAccept is undecidable.
- 3. Let Accept = $\{\langle M, w \rangle : M \text{ accepts } w\}$. Prove that Accept is undecidable.

To think about later:

- 1. Prove that each of the following languages is undecidable.
 - (a) ALWAYACCEPT = $\{\langle M \rangle : ACCEPT(M) = \Sigma^*\}$
 - (b) AlwayReject = $\{\langle M \rangle : \text{Reject}(M) = \Sigma^*\}$
 - (c) AlwayHalt = $\{\langle M \rangle : \text{Halt}(M) = \Sigma^* \}$
 - (d) AlwayDiverge = $\{\langle M \rangle : \text{Diverge}(M) = \Sigma^*\}$